DOI QR코드

DOI QR Code

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner

임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발

  • Kim, Eun Ju (Department of Radiology, Severance Hospital, YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine) ;
  • Kim, Daehong (Molecular Imaging & Therapy Branch, National Cancer Center) ;
  • Lee, Sangwoo (GE Healthcare. Global Applied Science Laboratory) ;
  • Heo, Dan (Department of Radiology, Severance Hospital, Yonsei University College of Medicine) ;
  • Lee, Young Han (Department of Radiology, Severance Hospital, YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine) ;
  • Suh, Jin-Suck (Department of Radiology, Severance Hospital, YUHS-KRIBB Medical Convergence Research Institute, Yonsei University College of Medicine)
  • 김은주 (연세대학교 의과대학 영상의학과 연세-생공연 메디컬융합연구소) ;
  • 김대홍 (국립암센터 분자영상치료연구과) ;
  • 이상우 (지이헬스케어코리아(주)) ;
  • 허단 (연세대학교 의과대학 영상의학과) ;
  • 이영한 (연세대학교 의과대학 영상의학과 연세-생공연 메디컬융합연구소) ;
  • 서진석 (연세대학교 의과대학 영상의학과 연세-생공연 메디컬융합연구소)
  • Received : 2013.12.13
  • Accepted : 2014.03.12
  • Published : 2014.03.30

Abstract

Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.

목적: 임상용 MRI에서 마우스 종양의 pH 측정을 위한 $^1H-^{31}P$ RF 코일 시스템을 개발하고 팬텀을 이용하여 pH 값의 정확도를 시험하고자 한다. 대상과 방법: 마우스 종양 연구를 위한 표면형 $^1H$$^{31}P$ radio frequency (RF) 코일을 개발하였다. 두 코일을 서로 수직이 되도록 설치하여 두 코일간의 상호인덕턴스를 0으로 하였다. 다양한 pH 값을 가진 팬텀으로부터 $^{31}P$ MR 스펙트럼을 얻어 Henderson-Hasselbalch equation을 이용하여 pH를 구하였다. $^{31}P$ 스펙트럼으로부터 얻은 pH값은 pH meter를 사용하여 직접 구한 pH값과 비교한다. 결과: $^1H-^{31}P$ RF 코일 상호간 coil coupling (S12)은 각각 -73.0, -62.3 dB로 충분히 분리 되었다. 균일한 팬텀으로부터 얻은 $^1H$ 영상의 signal-to-noise ratio (SNR)는 약 300 이상이며, in vivo 고해상도 마우스 영상을 얻을 수 있었다. $^1H$ 신호가 분리된 $^{31}P$ MR 스펙트럼으로부터 얻은 pH값은 pH meter로 직접 측정하여 얻은 값과 약 97% 상관관계를 가졌다. 결론: 본 연구에서 개발한 임상 MRI 장비용 $^1H-^{31}P$ RF 코일 시스템으로부터 정확한 pH를 구할 수 있었다. 본 코일 시스템은 31P 이외의 다른 핵 MRS 혹은 MRI에 적용 가능할 것으로 기대된다.

Keywords

References

  1. Glunde K, Bhujwalla ZM. Metabolic tumor imaging using magnetic resonance spectroscopy. Semin Oncol 2011;38:26-41 https://doi.org/10.1053/j.seminoncol.2010.11.001
  2. Stubbs M, Bhujwalla ZM, Tozer GM, et al. An assessment of 31P MRS as a method of measuring pH in rat tumours. NMR Biomed 1992;5:351-359 https://doi.org/10.1002/nbm.1940050606
  3. Zhou R, Bansal N, Leeper DB, Glickson JD. Intracellular acidification of human melanoma xenografts by the respiratory inhibitor m-iodobenzylguanidine plus hyperglycemia: a 31P magnetic resonance spectroscopy study. Cancer Res 2000;60:3532-3236
  4. Gallagher FA, Kettunen MI, Brindle KM. Imaging pH with hyperpolarized 13C. NMR Biomed 2011;24:1006-1015 https://doi.org/10.1002/nbm.1742
  5. Mason RP, Antich PP, Babcock EE, Gerberich JL, Nunnally RL. Perfluorocarbon imaging in vivo: a 19F MRI study in tumorbearing mice. Magn Reson Imaging 1989;7:475-485 https://doi.org/10.1016/0730-725X(89)90402-5
  6. McSheehy PM, Seymour MT, Ojugo AS, et al. A pharmacokinetic and pharmacodynamic study in vivo of human HT29 tumours using 19F and 31P magnetic resonance spectroscopy. Eur J Cancer 1997;33:2418-2427 https://doi.org/10.1016/S0959-8049(97)00336-5
  7. Gillies RJ, Raghunand N, Garcia-Martin ML, Gatenby RA. pH imaging. A review of pH measurement methods and applications in cancers. IEEE Eng Med Biol Mag 2004;23:57-64
  8. Iessi E, Marino ML, Lozupone F, Fais S, Milito AD. Tumor acidity and malignancy: novel aspects in the design of antitumor therapy. Cancer Therapy 2008;6:55-66
  9. Hashim AI, Zhang X, Wojtkowiak JW, Martinez GV, Gillies RJ. Imaging pH and metastasis. NMR Biomed 2011;24:582-591
  10. Gillies RJ, Raghunand N, Karczmar GS, Bhujwalla ZM. MRI of the tumor microenvironment. J Magn Reson Imaging 2002;16:430-450 https://doi.org/10.1002/jmri.10181
  11. Negendank W. Studies of human tumors by MRS: a review. NMR Biomed 1992;5:303-324 https://doi.org/10.1002/nbm.1940050518
  12. Bottomley PA, Hardy CJ, Roemer PB, Mueller OM. Protondecoupled, Overhauser-enhanced, spatially localized carbon-13 spectroscopy in humans. Magn Reson Med 1989;12:348-363 https://doi.org/10.1002/mrm.1910120307
  13. Merkle H, Wei HR, Garwood M, Ugurbil K. B1-insensitive heteronuclear adiabatic polarization transfer for signal enhancement. J Magn Reson 1992;99:480-494
  14. Adriany G, Gruetter R. A half-volume coil for efficient proton decoupling in humans at 4 Tesla. J Magn Reson 1997;125:178-184 https://doi.org/10.1006/jmre.1997.1113
  15. WMIC 2013 P266 New Design of dual Tuned RF coil for Fluorine MR Molecular Imaging.
  16. Barberi EA, Gati JS, Rutt BK, Menon RS. A transmitonly/ receive-only (TORO) RF system for high-field MRI/MRS applications. Magn Reson Med 2000;43:284-289 https://doi.org/10.1002/(SICI)1522-2594(200002)43:2<284::AID-MRM16>3.0.CO;2-C
  17. Cassidy PJ, Clarke K, Edwards DJ. Determining the tuning and matching requirements of RF coils using electromagnetic simulation and electric circuit analysis. Concepts in Magn Reson Part B Magn Reson Eng 2005;25:27-41
  18. De Graaf RA. In vivo NMR Spectroscopy - Principles and Techniques. 2nd ed. John Wiley & Sons Ltd, 2007:80-82
  19. Larcombe-McDouall J, Buttell N, Harrison N, Wray S. In vivo pH and metabolite changes during a single contraction in rat uterine smooth muscle. J Physiol 1999;518:783-790 https://doi.org/10.1111/j.1469-7793.1999.0783p.x
  20. Babic SI, Akyel C. Calculating mutual inductance between circular coils with inclined axes in air. IEEE Trans. Magn 2008;44:1743-1750 https://doi.org/10.1109/TMAG.2008.920251
  21. Grover FW, Inductance Calculations. New York: Dover, 1964:193-208

Cited by

  1. MR thermometry analysis program for laser- or high-intensity focused ultrasound (HIFU)-induced heating at a clinical MR scanner vol.65, pp.12, 2014, https://doi.org/10.3938/jkps.65.2126