DOI QR코드

DOI QR Code

강우관측소의 설치고도를 고려한 강우관측망 평가방안

A Methodology for Rain Gauge Network Evaluation Considering the Altitude of Rain Gauge

  • 이지호 (서울과학기술대학교 건설시스템디자인) ;
  • 전환돈 (서울과학기술대학교 건설시스템디자인)
  • Lee, Ji Ho (Department of Civil Engineering, Seoul Nation University of Science and Technology) ;
  • Jun, Hwan Don (Department of Civil Engineering, Seoul Nation University of Science and Technology)
  • 투고 : 2014.01.01
  • 심사 : 2014.02.05
  • 발행 : 2014.02.28

초록

강우량은 관측소의 설치고도에 따라 관측량의 편차가 심하며, 이로 인해 도시지역과 산지지역의 강우발생 특성이 다르다. 산지효과로 인해 고도가 높아질수록 강우 관측시 불확실성이 커지는 것을 감안하면 산지지역에서의 강우관측소 밀도는 커야한다. 이러한 관측소의 고도특성이 반영된 관측망 평가는 산지효과를 반영하기 위한 것으로 산악지역에서 발생하는 돌발홍수의 효과적인 예측 및 레이더 자료의 보정에 있어 중요한 과정이 된다. 이에 본 연구에서는 강우관측소의 설치고 도를 고려한 강우관측망의 평가방법론을 제안하였다. 강우관측소의 고도별 설치밀도 파악을 위해 고정간격의 고도를 이용하는 등고도비별 설치밀도 산정방법과 유역의 면적비를 이용하는 등면적비별 설치밀도 산정방법을 적용하였다. 그 결과 등면적비를 이용하는 경우가 고도별 강우관측망의 평가에 보다 유리함을 확인하였다. 아울러 타유역과의 비교를 위해 등면적별 관측소 설치밀도의 변동계수를 이용하여 고도별 분포를 정량화 하였다. 이는 강우관측소의 설치고도분포의 균등함을 평가하는 정량적 지표가 되며, 제시된 방법론을 5대강 유역에 적용하였다. 그 결과, 설치밀도의 변동계수가 작은 유역에서는 고도별 강우설치밀도가 일정함으로 인해 보다 균등한 분포를, 반면 변동계수가 큰 유역에서는 상대적으로 고도별 설치밀도가 불균등함을 확인하였다.

The observed rainfall may be different along with the altitude of rain gauge, resulting in the fact that the characteristics of rainfall events occurred in urban or mountainous areas are different. Due to the mountainous effects, in higher altitude, the uncertainty involved in the rainfall observation gets higher so that the density of rain gauges should be more dense. Basically, a methodology for the rain gauge network evaluation, considering this altitude effect of rain gauges can account for the mountainous effects and becomes an important step for forecasting flash flood and calibrating of the radar rainfall. For this reason, in this study, we suggest a methodology for rain gauge network evaluation with consideration of the rain gauge's altitude. To explore the density of rain gauges at each level of altitude, the Equal-Altitude-Ratio of the density of rain gauges, which is based on the fixed amount of elevation and the Equal-Area-Ratio of the density of rain gauges, which is based on the fixed amount of basin area are designed. After these two methods are applied to a real watershed, it is found that the Equal-Area-Ratio generates better results for evaluation of a rain gauge network with consideration of rain gauge's altitude than the Equal-Altitude-Ratio does. In addition, for comparison between the soundness of rain gauge networks in other watersheds, the Coefficient of Variation (CV) of the rain gauge density by the Equal-Area-Ratio is served as the index for the evenness of the distribution of the rain gauge's altitude. The suggested method is applied to the five large watersheds in Korea and it is found that rain gauges installed in a watershed having less value of the CV shows more evenly distributed than the ones in a watershed having higher value of the CV.

키워드

참고문헌

  1. Al-Zahrani, M and Husain, T (1998). An algorithm for designing a precipitation network in the southwestern region of Saudi Arabia, J. of Hydrology, 205, pp. 205-216. https://doi.org/10.1016/S0022-1694(97)00153-4
  2. Caselton, WF and Husain, T (1980). Hydrologic networks: Information transmission, J. of Water Resources Planning and Management Division, 106, pp. 503-529.
  3. Chapman, TG (1986). Entropy as a measure of hydrologic data uncertainty and model performance, J. of Hydrology, 85, pp. 111-126. https://doi.org/10.1016/0022-1694(86)90079-X
  4. Daly, C, Neilson, RP and Phillips, DL (1994). A statistical topographic model for mapping climatological precipitation over mountainous terrain, J. of applied meteorology, 33(3), pp. 140-158. https://doi.org/10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  5. Donley, DE and Mitchell, RL (1939). The relation of rainfall to elevation in the southern appalachian region, Transactions of the American Geophysical Union, 20, pp. 711-721. https://doi.org/10.1029/TR020i004p00711
  6. Kim, DK and Chun, HY (2000). A numerical study of the orographic effects associated with a heavy rainfall event, J. of the Korean Meteorological Society, 36(4), pp. 441-454. [Korean Literature]
  7. Kim, KW, Yoo CS and Jun, KS (2004). Orographic effect estimation of rainfall in han river basin - 3. Regionalization, J. of Korea Society of Civil Engineers, 24(5B), pp. 461-468. [Korean Literature]
  8. Kim, MJ and Lee, DK (1998). The study on local circulation and orographic precipitation over the southwestern Korean peninsula, J. of the Korean Meteorological Society, 34(1), pp. 128-146. [Korean Literature]
  9. Krstanovic, PF and Singh, VP (1992). Evaluation of rainfall networks using entropy: II. Application, J. of Water Resources Management, 6, pp. 295-314. https://doi.org/10.1007/BF00872282
  10. Langbein, WB (1947). Topographic characteristics of drainage basins, U.S. Geological Survey, Water-Supply Paper 968-C, pp. 125-157.
  11. Lee, JH, Byun, HS, Kim, HS and Jun, HD (2013). Evaluation of a rain gauge network considering the spatial distribution characteristics and entropy : A case study of Imha dam basin, J. of Korea Society of Hazard Mitigation, 13(2). pp. 217-226. [Korean Literature]
  12. Lee, JS (2006). Hydrology, Gumi Publisher. [Korean Literature]
  13. Naoum, S and Tsanis, IK (2004). A multiple linear regression GIS module using spatial variables to model orographic rainfall, J. of hydroinformatics, 6(1), pp. 39-56.
  14. National Emergency Management Agency (NEMA). (1999). Disaster annual report. [Korean Literature]
  15. Peck, EL and Schaake, JC (1990). Network design for water supply forecasting in the west, Water Resources Bulletin, 26, pp. 87-99.
  16. Rodda, J.C. (1951) An objective method for the assessment of areal rainfall amounts, Weather, Vol. 17, pp. 54-59.
  17. Seo, KH and Lee DK (1996). Analysis and simulation of orographic rain in the middle part of the Korean peninsula, J. of the Korean Meteorological Society, 32(4), pp. 512-533. [Korean Literature]
  18. Stidd, CK and Leopold, LB (1951). The geographic distribution of average monthly rainfall, Hawaii, American Meteorological Society, 1(3): pp. 24-33.
  19. World Meteorological Organization (WMO). (1994). Guide to hydrological practices, Fifth edition, WMONo.168.
  20. Yoo, CS and Jung, KS (2001). Estimation of area average rainfall amount and its error, J. of Korea Water Resources Association, 34(4), pp. 317-326. [Korean Literature]
  21. Yoo, CS, Jun, KS and Kim, KW (2004a). Estimation of orographic effect on precipitation in the Han river basin -I. Regression analysis-, J. of Korea Society of Civil Engineers, 24(1B), pp. 33-39. [Korean Literature]
  22. Yoo, CS, Jun, KS and Kim, KW (2004b). Estimation of orographic effect on precipitation in the Han river basin -II. EOF analysis-, J. of Korea Society of Civil Engineers, 24(1B), pp. 41-46. [Korean Literature]
  23. Yoo, CS, Kim, IB and Ryu, SR (2003). Evaluation of rain gauge density and spatial distribution: A case study for Nam Han river basin, J. of Korea Water Resources Association, 36(2), pp. 173-181. [Korean Literature] https://doi.org/10.3741/JKWRA.2003.36.2.173
  24. Yoon, YN (2007). Hydrology, Chungmoongak Publisher. [Korean Literature]
  25. Yun, HS, Um, MJ, Cho, WC and Heo, JH (2009). Orographic precipitation analysis with regional frequency analysis and multiple linear regression, J. of Korea Water Resources Association, 42(6). pp. 465-480. [Korean Literature]