DOI QR코드

DOI QR Code

A Review on the Failure Mechanism for Crystalline Silicon PV Module

결정계 PV 모듈에 대한 고장 메커니즘 검토

  • Kim, Jeong-Yeon (Component & Materials Physics Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kim, Ju-Hee (Component & Materials Physics Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Chan, Sung-Il (Component & Materials Physics Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Lim, Dong-Gun (Department of Electronic Engineering, Korea National University of Transportation) ;
  • Kim, Yang-Seob (Managerial Researcher/Software Device Research Center, Korea Electronics Technology Institute (KETI))
  • 김정연 (전자부품연구원 부품소재물리연구센터) ;
  • 김주희 (전자부품연구원 부품소재물리연구센터) ;
  • 천성일 (전자부품연구원 부품소재물리연구센터) ;
  • 임동건 (한국교통대학교 전자공학과) ;
  • 김양섭 (전자부품연구원 소프트웨어디바이스연구센터)
  • Received : 2014.04.17
  • Accepted : 2014.05.08
  • Published : 2014.06.01

Abstract

It is summarized that potential causes of performance degradations and failure mechanisms of crystalline silicon photovoltaic (PV) modules installed in Middle East area. In addition, we also reviewed current PV module qualification test (IEC 61215) and the methods for detection of wear-out fault. The failure of PV modules in the extreme environmental conditions such as deserts is mainly due to high temperature, humidity, and dust storms. In particular, cementation phenomenon caused by combination of sand and moisture leads to rapid degradation in the performance of PV modules. In order to evaluate and guarantee the long term reliability of PV modules, specific qualification tests such as sand dust test, salt mist test and potential induce degradation test considering operating environment of PV module should be carried out.

Keywords

References

  1. C. R. Osterwald and T. J. McMahon, Prog. in Photovoltaics: Research and Applications, 17, 11 (2009). https://doi.org/10.1002/pip.861
  2. J. H. Wohlgemuth and S. Kurtz, In Photovoltaic Specialists Conference (PVSC) 37th IEEE, 003601 (2011).
  3. http://www.wunderground.com (2013).
  4. V. V. Tyagi, N. A. A. Rahim, N. A. Rahim, and J. A. Selvaraj, Renewable and Sustainable Energy Reviews, 20, 443 (2013). https://doi.org/10.1016/j.rser.2012.09.028
  5. D. S. Dubey, J. N. Sarvaiya, B. Seshadri, and B. Seshadri, Energy Procedia, 33, 311 (2013). https://doi.org/10.1016/j.egypro.2013.05.072
  6. Hadagali and V. Vinaykumar, Thesis, p. 5-10, University of Central Florida Orlando, Florida (2005).
  7. J. S. Jeong, N. C. Park, and C. W. Han, Microelectronics Reliability, 52, 2326 (2012). https://doi.org/10.1016/j.microrel.2012.06.027
  8. M. A. Quintana, D. L. King, and T. J. McMahon, Photovoltaic Specialists Conference, Conference Record of the Twenty-Ninth IEEE, 1436 (2002).
  9. M. A. Munoz-Garcia, O. Marina, M. C. Alonso-Garciab, and F. Chenlob, Solar Energy, 85, 2264 (2011). https://doi.org/10.1016/j.solener.2011.06.011
  10. S. Friera and Paula, Prog. in Photovoltaics: Research and Applications, 19, 658 (2011). https://doi.org/10.1002/pip.1083
  11. N. C Pack and J. S Jeong, Microelectronics Reliability, 53, 1818 (2013). https://doi.org/10.1016/j.microrel.2013.07.062
  12. M. S. El-Shobokshy, S. Mohammad, and F. M. Hussein, Solar Energy, 51, 505 (1993). https://doi.org/10.1016/0038-092X(93)90135-B
  13. A. O. Mohamed and A. Hasan, J. Basic Appl. Sci. Res., 2, 11030 (2012).
  14. E. F. Cuddihy, Solar Energy Materials, 3, 21 (1980). https://doi.org/10.1016/0165-1633(80)90047-7
  15. W. Herrmann and N. Bogdanski, Photovoltaic Specialists Conference (PVSC), 37th IEEE, 002305 (2011).
  16. R. Khatri, S. Agarwal, I. Saha, S. K. Singh, and B. Kumar, Energy Procedia, 8, 396 (2011). https://doi.org/10.1016/j.egypro.2011.06.156
  17. A. Zielnik, Validating Photovoltaic Module Durability Tests, www.solarABCs.org (2013).
  18. G. Tamizhmani and J. Kuitche, Accelerated Lifetime Testing of Photovoltaic Modules, www.solarABCs.org (2013).