DOI QR코드

DOI QR Code

Honokiol Suppresses Renal Cancer Cells' Metastasis via Dual-Blocking Epithelial-Mesenchymal Transition and Cancer Stem Cell Properties through Modulating miR-141/ZEB2 Signaling

  • Li, Weidong (Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU)) ;
  • Wang, Qian (The Medical Faculty of Jinan University) ;
  • Su, Qiaozhen (Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine) ;
  • Ma, Dandan (Internal Medicine of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine) ;
  • An, Chang (Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine) ;
  • Ma, Lei (Department of Medical Oncology, Affiliated Cancer Hospital of Guangzhou Medical University, Cancer Center of Guangzhou Medical University (CCGMU)) ;
  • Liang, Hongfeng (Department of Neurology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine)
  • Received : 2014.01.20
  • Accepted : 2014.03.31
  • Published : 2014.05.31

Abstract

Renal cell carcinoma (RCC) is associated with a high frequency of metastasis and only few therapies substantially prolong survival. Honokiol, isolated from Magnolia spp. bark, has been shown to exhibit pleiotropic anticancer effects in many cancer types. However, whether honokiol could suppress RCC metastasis has not been fully elucidated. In the present study, we found that honokiol suppressed renal cancer cells' metastasis via dual-blocking epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. In addition, honokiol inhibited tumor growth in vivo. It was found that honokiol could upregulate miR-141, which targeted ZEB2 and modulated ZEB2 expression. Honokiol reversed EMT and suppressed CSC properties partly through the miR-141/ZEB2 axis. Our study suggested that honokiol may be a suitable therapeutic strategy for RCC treatment.

Keywords

References

  1. Addla, S.K., Brown, M.D., Hart, C.A., Ramani, V.A., and Clarke, N.W. (2008). Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am. J. Physiol. Renal Physiol. 295, F680-687. https://doi.org/10.1152/ajprenal.90286.2008
  2. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
  3. Banerjee, P., Basu, A., Arbiser, J.L., and Pal, S. (2013). The natural product honokiol inhibits calcineurin inhibitor-induced and Rasmediated tumor promoting pathways. Cancer Lett. 338, 292-299. https://doi.org/10.1016/j.canlet.2013.05.036
  4. Cheng, L., Zhang, S., MacLennan, G.T., Lopez-Beltran, A., and Montironi, R. (2009). Molecular and cytogenetic insights into the pathogenesis, classification, differential diagnosis, and prognosis of renal epithelial neoplasms. Hum. Pathol. 40, 10-29.
  5. Croce, C.M., and Calin, G.A. (2005). miRNAs, cancer, and stem cell division. Cell 122, 6-7. https://doi.org/10.1016/j.cell.2005.06.036
  6. Deng, X., Ma, L., Wu, M., Zhang, G., Jin, C., Guo, Y., and Liu, R. (2013). miR-124 radiosensitizes human glioma cells by targeting CDK4. J. Neurooncol. 114, 263-274. https://doi.org/10.1007/s11060-013-1179-2
  7. Fang, Y., Wei, J., Cao, J., Zhao, H., Liao, B., Qiu, S., Wang, D., Luo, J., and Chen, W. (2013). Protein expression of ZEB2 in renal cell carcinoma and its prognostic significance in patient survival. PLoS One 8, e62558. https://doi.org/10.1371/journal.pone.0062558
  8. Fried, L.E., and Arbiser, J.L. (2009). Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid. Redox Signal. 11, 1139-1148. https://doi.org/10.1089/ars.2009.2440
  9. Gregory, P.A., Bracken, C.P., Bert, A.G., and Goodall, G.J. (2008). MicroRNAs as regulators of epithelial-mesenchymal transition. Cell Cycle 7, 3112-3118. https://doi.org/10.4161/cc.7.20.6851
  10. Gupta, P.B., Onder, T.T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R.A., and Lander, E.S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645-659. https://doi.org/10.1016/j.cell.2009.06.034
  11. Henrion, M., Frampton, M., Scelo, G., Purdue, M., Ye, Y., Broderick, P., Ritchie, A., Kaplan, R., Meade, A., McKay, J., et al. (2013). Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum. Mol. Genet. 22, 825-831. https://doi.org/10.1093/hmg/dds489
  12. Huang, B., Huang, Y.J., Yao, Z.J., Chen, X., Guo, S.J., Mao, X.P., Wang, D.H., Chen, J.X., and Qiu, S.P. (2013). Cancer stem celllike side population cells in clear cell renal cell carcinoma cell line 769P. PLoS One 8, e68293. https://doi.org/10.1371/journal.pone.0068293
  13. Kong, D., Li, Y., Wang, Z., and Sarkar, F.H. (2011). Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers 3, 716-729. https://doi.org/10.3390/cancers30100716
  14. Kumar, A., Kumar Singh, U., and Chaudhary, A. (2013). Honokiol analogs: a novel class of anticancer agents targeting cell signaling pathways and other bioactivities. Future Med. Chem. 5, 809-829. https://doi.org/10.4155/fmc.13.32
  15. Lee, Y.J., Lee, Y.M., Lee, C.K., Jung, J.K., Han, S.B., and Hong, J.T. (2011). Therapeutic applications of compounds in the Magnolia family. Pharmacol. Ther. 130, 157-176. https://doi.org/10.1016/j.pharmthera.2011.01.010
  16. Liu, H., Zang, C., Emde, A., Planas-Silva, M.D., Rosche, M., Kuhnl, A., Schulz, C.O., Elstner, E., Possinger, K., and Eucker, J. (2008). Anti-tumor effect of honokiol alone and in combination with other anti-cancer agents in breast cancer. Eur. J. Pharmacol. 591, 43-51. https://doi.org/10.1016/j.ejphar.2008.06.026
  17. Ma, L., Zhang, G., Miao, X.B., Deng, X.B., Wu, Y., Liu, Y., Jin, Z.R., Li, X.Q., Liu, Q.Z., Sun, D.X., et al. (2013). Cancer stem-like cell properties are regulated by EGFR/AKT/beta-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma. FEBS J. 280, 2027-2041. https://doi.org/10.1111/febs.12226
  18. Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715. https://doi.org/10.1016/j.cell.2008.03.027
  19. McLaughlin, J.K., Lipworth, L., and Tarone, R.E. (2006). Epidemiologic aspects of renal cell carcinoma. Semin. Oncol. 33, 527-533. https://doi.org/10.1053/j.seminoncol.2006.06.010
  20. Motzer, R.J., Mazumdar, M., Bacik, J., Berg, W., Amsterdam, A., and Ferrara, J. (1999). Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J. Clin. Oncol. 17, 2530-2540. https://doi.org/10.1200/JCO.1999.17.8.2530
  21. Moutasim, K.A., Nystrom, M.L., and Thomas, G.J. (2011). Cell migration and invasion assays. Methods Mol. Biol. 731, 333-343. https://doi.org/10.1007/978-1-61779-080-5_27
  22. Nakada, C., Matsuura, K., Tsukamoto, Y., Tanigawa, M., Yoshimoto, T., Narimatsu, T., Nguyen, L.T., Hijiya, N., Uchida, T., Sato, F., et al. (2008). Genome-wide microRNA expression profiling in renal cell carcinoma: significant down-regulation of miR-141 and miR-200c. J. Pathol. 216, 418-427. https://doi.org/10.1002/path.2437
  23. Newman, D.J., Cragg, G.M., and Snader, K.M. (2003). Natural products as sources of new drugs over the period 1981-2002. J. Nat. Products 66, 1022-1037. https://doi.org/10.1021/np030096l
  24. Oates, J.E., Grey, B.R., Addla, S.K., Samuel, J.D., Hart, C.A., Ramani, V.A., Brown, M.D., and Clarke, N.W. (2009). Hoechst 33342 side population identification is a conserved and unified mechanism in urological cancers. Stem Cells Dev. 18, 1515-1522. https://doi.org/10.1089/scd.2008.0302
  25. Polyak, K., and Weinberg, R.A. (2009). Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat. Rev. Cancer 9, 265-273. https://doi.org/10.1038/nrc2620
  26. Ponnurangam, S., Mammen, J.M., Ramalingam, S., He, Z., Zhang, Y., Umar, S., Subramaniam, D., and Anant, S. (2012). Honokiol in combination with radiation targets notch signaling to inhibit colon cancer stem cells. Mol. Cancer Ther. 11, 963-972. https://doi.org/10.1158/1535-7163.MCT-11-0999
  27. Radisky, D.C., and LaBarge, M.A. (2008). Epithelial-mesenchymal transition and the stem cell phenotype. Cell Stem Cell 2, 511-512. https://doi.org/10.1016/j.stem.2008.05.007
  28. Redova, M., Poprach, A., Besse, A., Iliev, R., Nekvindova, J., Lakomy, R., Radova, L., Svoboda, M., Dolezel, J., Vyzula, R., et al. (2013). MiR-210 expression in tumor tissue and in vitro effects of its silencing in renal cell carcinoma. Tumour Biol. 34, 481-491. https://doi.org/10.1007/s13277-012-0573-2
  29. Roy, S.S., Gonugunta, V.K., Bandyopadhyay, A., Rao, M.K., Goodall, G.J., Sun, L.Z., Tekmal, R.R., and Vadlamudi, R.K. (2013). Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene [Epub ahead of print].
  30. Singh, T., Prasad, R., and Katiyar, S.K. (2013). Inhibition of class I histone deacetylases in non-small cell lung cancer by honokiol leads to suppression of cancer cell growth and induction of cell death in vitro and in vivo. Epigenetics 8, 54-65. https://doi.org/10.4161/epi.23078
  31. Taube, J.H., Malouf, G.G., Lu, E., Sphyris, N., Vijay, V., Ramachandran, P.P., Ueno, K.R., Gaur, S., Nicoloso, M.S., Rossi, S., et al. (2013). Epigenetic silencing of microRNA-203 is required for EMT and cancer stem cell properties. Sci. Rep. 3, 2687. https://doi.org/10.1038/srep02687
  32. Tian, W., Xu, D., and Deng, Y.C. (2012). Honokiol, a multifunctional tumor cell death inducer. Die Pharmazie 67, 811-816.
  33. Valster, A., Tran, N.L., Nakada, M., Berens, M.E., Chan, A.Y., and Symons, M. (2005). Cell migration and invasion assays. Methods 37, 208-215. https://doi.org/10.1016/j.ymeth.2005.08.001
  34. Wotschofsky, Z., Liep, J., Meyer, H.A., Jung, M., Wagner, I., Disch, A.C., Schaser, K.D., Melcher, I., Kilic, E., Busch, J., et al. (2012). Identification of metastamirs as metastasis-associated micro-RNAs in clear cell renal cell carcinomas. Int. J. Biol. Sci. 8, 1363-1374. https://doi.org/10.7150/ijbs.5106
  35. Xie, Y.K., Huo, S.F., Zhang, G., Zhang, F., Lian, Z.P., Tang, X.L., and Jin, C. (2012). CDA-2 induces cell differentiation through suppressing Twist/SLUG signaling via miR-124 in glioma. J. Neurooncol. 110, 179-186. https://doi.org/10.1007/s11060-012-0961-x
  36. Xu, H., Mei, Q., Xiong, C., and Zhao, J. (2013). Tumor-suppressing effects of miR-141 in human osteosarcoma. Cell Biochem. Biophys. [Epub ahead of print].
  37. Yao, C.J., Lai, G.M., Yeh, C.T., Lai, M.T., Shih, P.H., Chao, W.J., Whang-Peng, J., Chuang, S.E., and Lai, T.Y. (2013). Honokiol eliminates human oral cancer stem-like cells accompanied with suppression of Wnt/ beta -catenin signaling and apoptosis induction. Evid. Based Complement. Alternat. Med. 2013, 146136.
  38. Yoshino, H., Enokida, H., Itesako, T., Tatarano, S., Kinoshita, T., Fuse, M., Kojima, S., Nakagawa, M., and Seki, N. (2013). Epithelial-mesenchymal transition-related microRNA-200s regulate molecular targets and pathways in renal cell carcinoma. J. Hum. Genet. 58, 508-516. https://doi.org/10.1038/jhg.2013.31

Cited by

  1. Targeting Strategies for Renal Cell Carcinoma: From Renal Cancer Cells to Renal Cancer Stem Cells vol.7, 2016, https://doi.org/10.3389/fphar.2016.00423
  2. Honokiol targets mitochondria to halt cancer progression and metastasis vol.60, pp.6, 2016, https://doi.org/10.1002/mnfr.201501007
  3. Current approaches in identification and isolation of human renal cell carcinoma cancer stem cells vol.6, pp.1, 2015, https://doi.org/10.1186/s13287-015-0177-z
  4. Targeting Cancer Stem Cells with Small Molecules vol.57, pp.3-4, 2017, https://doi.org/10.1002/ijch.201600109
  5. Honokiol suppresses metastasis of renal cell carcinoma by targeting KISS1/KISS1R signaling vol.46, pp.6, 2015, https://doi.org/10.3892/ijo.2015.2950
  6. c-Myc is a novel target of cell cycle arrest by honokiol in prostate cancer cells vol.15, pp.17, 2016, https://doi.org/10.1080/15384101.2016.1201253
  7. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression vol.482, pp.4, 2017, https://doi.org/10.1016/j.bbrc.2016.12.045
  8. miR-206 functions as a novel cell cycle regulator and tumor suppressor in clear-cell renal cell carcinoma vol.374, pp.1, 2016, https://doi.org/10.1016/j.canlet.2016.01.032
  9. Epithelial to Mesenchymal Transition in Renal Cell Carcinoma: Implications for Cancer Therapy vol.20, pp.2, 2016, https://doi.org/10.1007/s40291-016-0192-5
  10. Cancer Stem Cells: The Potential Targets of Chinese Medicines and Their Active Compounds vol.17, pp.6, 2016, https://doi.org/10.3390/ijms17060893
  11. Honokiol inhibits EMT-mediated motility and migration of human non-small cell lung cancer cells in vitro by targeting c-FLIP vol.37, pp.12, 2016, https://doi.org/10.1038/aps.2016.81
  12. Co-delivery of honokiol, a constituent of Magnolia species, in a self-microemulsifying drug delivery system for improved oral transport of lipophilic sirolimus 2015, https://doi.org/10.3109/10717544.2015.1020119
  13. Honokiol Metabolites Study in Rat Kidney Employing UHPLC-Q-TOF/MS and 13C Stable Isotope Labeling vol.78, pp.7-8, 2015, https://doi.org/10.1007/s10337-015-2859-1
  14. The Role of Hypoxia and Cancer Stem Cells in Renal Cell Carcinoma Pathogenesis vol.11, pp.6, 2015, https://doi.org/10.1007/s12015-015-9611-y
  15. MicroRNAs and Chinese Medicinal Herbs: New Possibilities in Cancer Therapy vol.7, pp.3, 2015, https://doi.org/10.3390/cancers7030855
  16. Synergistic Effect and Molecular Mechanisms of Traditional Chinese Medicine on Regulating Tumor Microenvironment and Cancer Cells vol.2016, 2016, https://doi.org/10.1155/2016/1490738
  17. MicroRNAs in the Pathogenesis of Renal Cell Carcinoma and Their Diagnostic and Prognostic Utility as Cancer Biomarkers vol.31, pp.1, 2016, https://doi.org/10.5301/jbm.5000174
  18. The Role of Compounds Derived from Natural Supplement as Anticancer Agents in Renal Cell Carcinoma: A Review vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010107
  19. The crucial role of ZEB2: From development to epithelial-to-mesenchymal transition and cancer complexity pp.00219541, 2019, https://doi.org/10.1002/jcp.28277
  20. E-cadherin re-expression shows in vivo evidence for mesenchymal to epithelial transition in clonal metastatic breast tumor cells vol.7, pp.28, 2016, https://doi.org/10.18632/oncotarget.9715
  21. Protective Effect of Sinapine against Hydroxyl Radical-Induced Damage to Mesenchymal Stem Cells and Possible Mechanisms vol.64, pp.4, 2014, https://doi.org/10.1248/cpb.c15-00850
  22. SIRT3-KLF15 signaling ameliorates kidney injury induced by hypertension vol.8, pp.24, 2014, https://doi.org/10.18632/oncotarget.17165
  23. miR-211-5p Suppresses Metastatic Behavior by Targeting SNAI1 in Renal Cancer vol.15, pp.4, 2014, https://doi.org/10.1158/1541-7786.mcr-16-0288
  24. Tumor-associated macrophage-derived cytokines enhance cancer stem-like characteristics through epithelial–mesenchymal transition vol.11, pp.None, 2018, https://doi.org/10.2147/ott.s168317
  25. Molecular Mechanisms in Clear Cell Renal Cell Carcinoma: Role of miRNAs and Hypermethylated miRNA Genes in Crucial Oncogenic Pathways and Processes vol.10, pp.None, 2014, https://doi.org/10.3389/fgene.2019.00320
  26. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges vol.8, pp.10, 2014, https://doi.org/10.3390/cells8101118
  27. Reversal of Epithelial–Mesenchymal Transition by Natural Anti-Inflammatory and Pro-Resolving Lipids vol.11, pp.12, 2014, https://doi.org/10.3390/cancers11121841
  28. Honokiol: A Review of Its Anticancer Potential and Mechanisms vol.12, pp.1, 2014, https://doi.org/10.3390/cancers12010048
  29. MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy vol.10, pp.7, 2014, https://doi.org/10.3390/biom10071040
  30. ZDHXB-101 (3′,5-Diallyl-2, 4′-dihydroxy-[1,1′-biphen-yl]-3,5′-dicarbaldehyde) protects against airway remodeling and hyperresponsiveness via inhibiting both the activation of t vol.21, pp.1, 2020, https://doi.org/10.1186/s12931-020-1281-x