DOI QR코드

DOI QR Code

Chloroplast Genome Evolution in Early Diverged Leptosporangiate Ferns

  • Kim, Hyoung Tae (Division of Life Sciences, School of Life Sciences, Korea University) ;
  • Chung, Myong Gi (Department of Biology and the Research Institute of Natural Science, Gyeongsang National University) ;
  • Kim, Ki-Joong (Division of Life Sciences, School of Life Sciences, Korea University)
  • Received : 2013.10.15
  • Accepted : 2014.04.14
  • Published : 2014.05.31

Abstract

In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of codons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.

Keywords

References

  1. Bold, H.C., Alexopoulos, C.J., and Delevoryas, T. (1987). Morphology of Plants and Fungi, 4th ed. (New York: Harper and Row).
  2. Chumley, T.W., Palmer, J.D., Mower, J.P., Fourcade, H.M., Calie, P.J., Boore, J.L., and Jansen, R.K. (2006). The complete chloroplast genome sequence of Pelargonium x hortorum: organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol. Biol. Evol. 23, 2175-2190. https://doi.org/10.1093/molbev/msl089
  3. Cross, G.L. (1931a). Embryology of Osmunda cinnamomea. Bot. Gaz. 92, 210-217. https://doi.org/10.1086/334191
  4. Cross, G.L. (1931b). Meristem in Osmunda cinnamomea. Bot. Gaz. 91, 65-76. https://doi.org/10.1086/334126
  5. Downie, S.R., Llanas, E., and Katz-Downie, D.S. (1996). Multiple independent losses of the rpoC1 intron in angiosperm chloroplast DNA's. Syst. Bot. 21. 135-151. https://doi.org/10.2307/2419744
  6. Doyle, J.J., and Dolye, J.L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-15.
  7. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797. https://doi.org/10.1093/nar/gkh340
  8. Freeberg, J.A., and Gifford Jr, E.M. (1984). The root apical meristem of Osmunda regalis. Am. J. Bot. 71, 558-563. https://doi.org/10.2307/2443331
  9. Gao, L., Yi, X., Yang, Y.X., Su, Y.J., and Wang, T. (2009). Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol. Biol. 9, 130. doi:10.1186/1471-2148-9-130
  10. Gao, L., Wang, B., Wang, Z.W., Zhou, Y., Su, Y.J., and Wang, T. (2013). Plastome sequences of Lygodium japonicum and Marsilea crenata reveal the genome organization transformation from basal ferns to core leptosporangiates. Genome Biol. Evol. 5, 1403-1407. https://doi.org/10.1093/gbe/evt099
  11. Gifford Jr, E. (1983). Concept of apical cells in bryophytes and pteridophytes. Annu. Rev. Plant Physiol. 34, 419-440. https://doi.org/10.1146/annurev.pp.34.060183.002223
  12. Good, C.W., and Taylor, T.N. (1975). The morphology and systematic position of calamitean elater?bearing spores. Geosci. Man 11, 133-139. https://doi.org/10.1080/00721395.1975.9989762
  13. Grewe, F., Guo, W., Gubbels, E.A., Hansen, A.K., and Mower, J.P. (2013). Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol. Biol. 13, 8. https://doi.org/10.1186/1471-2148-13-8
  14. Guisinger, M.M., Kuehl, J.V., Boore, J.L., and Jansen, R.K. (2011). Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol. Biol. Evol. 28, 583-600. https://doi.org/10.1093/molbev/msq229
  15. Hasebe, M., and Iwatsuki, K. (1990). Chloroplast DNA from Adiantum capillus-veneris L., a fern species (Adiantaceae); clone bank, physical map and unusual gene localization in comparison with angiosperm chloroplast DNA. Curr. Genet. 17, 359-364. https://doi.org/10.1007/BF00314885
  16. Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamoto, M., Mori, M., Kondo, C., Honji, Y., Sun, C.R., Meng, B.Y., et al. (1989). The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185-194. https://doi.org/10.1007/BF02464880
  17. Iwatsuki, K., Yamazaki, T., Boufford, D., and Ohba, H. (1995). Flora of Japan. Vol. I, Pteridophyta and Gymnospermae (Tokyo: Kodansha).
  18. Jansen, R.K., Raubeson, L.A., Boore, J.L., dePamphilis, C.W., Chumley, T.W., Haberle, R.C., Wyman, S.K., Alverson, A.J., Peery, R., Herman, S.J., et al. (2005). Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol. 395, 348-384. https://doi.org/10.1016/S0076-6879(05)95020-9
  19. Jansen, R.K., Cai, Z., Raubeson, L.A., Daniell, H., Depamphilis, C.W., Leebens-Mack, J., Muller, K.F., Guisinger-Bellian, M., Haberle, R.C., Hansen, A.K., et al. (2007). Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc. Natl. Acad. Sci. USA 104, 19369-19374. https://doi.org/10.1073/pnas.0709121104
  20. Karol, K.G., Arumuganathan, K., Boore, J.L., Duffy, A.M., Everett, K.D., Hall, J.D., Hansen, S.K., Kuehl, J.V., Mandoli, D.F., Mishler, B.D., et al. (2010). Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol. Biol. 10, 321. https://doi.org/10.1186/1471-2148-10-321
  21. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., et al. (2012). Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
  22. Kim, K.J., and Lee, H.L. (2004). Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247-261. https://doi.org/10.1093/dnares/11.4.247
  23. Kim, Y.K., Park, C.W., and Kim, K.J. (2009). Complete chloroplast DNA sequence from a Korean endemic genus, Megaleranthis saniculifolia, and its evolutionary implications. Mol. Cells 27, 365-381. https://doi.org/10.1007/s10059-009-0047-6
  24. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. (2001). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642. https://doi.org/10.1093/nar/29.22.4633
  25. Lowe, T.M., and Eddy, S.R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  26. Metzgar, J.S., Skog, J.E., Zimmer, E.A., and Pryer, K.M. (2008). The paraphyly of Osmunda is confirmed by phylogenetic analyses of seven plastid loci. Syst. Bot. 33, 31-36. https://doi.org/10.1600/036364408783887528
  27. Miller, M.A., Pfeiffer, W., and Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees; in Gateway Computing Environments Workshop (GCE), 2010 (IEEE).
  28. Moore, G.P. (1983). Slipped-mispairing and the evolution of introns. Trends Biochem. Sci. 8, 411-414. https://doi.org/10.1016/0968-0004(83)90307-9
  29. Palmer, J.D. (1986). Isolation and structural analysis of chloroplast DNA. Methods Enzymol. 118, 167-186. https://doi.org/10.1016/0076-6879(86)18072-4
  30. Palmer, J.D., and Stein, D.B. (1982). Chloroplast DNA from the fern Osmunda cinnamomea: physical organization, gene localization and comparison to angiosperm. Curr. Genet. 5, 165-170. https://doi.org/10.1007/BF00391801
  31. Palmer, J.D., and Stein, D.B. (1986). Conservation of chloroplast genome structure among vascular plants. Curr. Genet. 10, 823-833. https://doi.org/10.1007/BF00418529
  32. Posada, D., and Crandall, K.A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  33. Pryer, K.M., Schneider, H., Smith, A.R., Cranfill, R., Wolf, P.G., Hunt, J.S., and Sipes, S.D. (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409, 618-622. https://doi.org/10.1038/35054555
  34. Pryer, K.M., Schuettpelz, E., Wolf, P.G., Schneider, H., Smith, A.R., and Cranfill, R. (2004). Phylogeny and evolution of ferns (monilophytes) with a focus on the early leptosporangiate divergences. Am. J. Bot. 91, 1582-1598. https://doi.org/10.3732/ajb.91.10.1582
  35. Pryer, K.M., Smith, A.R., and Rothfels, C. (2009). Polypodiopsida Cronquist, Takht. & Zimmerm. 1966. Ferns. Version 14, January 2009 (under construction). http://tolweb.org/Polypodiopsida/20615/2009.01.14 in The Tree of Life Web Project, http://tolweb.org/.
  36. Raubeson, L.A., and Jansen, R.K. (1992). Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255, 1697-1699. https://doi.org/10.1126/science.255.5052.1697
  37. Sablok, G., Nayak, K.C., Vazquez, F., and Tatarinova, T.V. (2011). Synonymous codon usage, GC(3), and evolutionary patterns across plastomes of three pooid model species: emerging grass genome models for monocots. Mol. Biotechnol. 49, 116-128. https://doi.org/10.1007/s12033-011-9383-9
  38. Schneider, H., Schuettpelz, E., Pryer, K.M., Cranfill, R., Magallon, S., and Lupia, R. (2004). Ferns diversified in the shadow of angiosperms. Nature 428, 553-557. https://doi.org/10.1038/nature02361
  39. Schuettpelz, E., and Pryer, K.M. (2007). Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56, 1037-1050. https://doi.org/10.2307/25065903
  40. Schweitzer, H.-J. (1972). Die Mitteldevon-Flora von Lindlar (Rheinland). 3. Filicinae-Hyenia elegans Krausel & Weyland. Palaeontographica Abteilung B, 154-175.
  41. Smith, D.R. (2009). Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol. Biol. 71, 627-639. https://doi.org/10.1007/s11103-009-9545-3
  42. Smith, A.R., Pryer, K.M., Schuettpelz, E., Korall, P., Schneider, H., and Wolf, P.G. (2006). A classification for extant ferns. Taxon 55, 705-731. https://doi.org/10.2307/25065646
  43. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  44. Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Syst. Biol. 57, 758-771. https://doi.org/10.1080/10635150802429642
  45. Swofford, D.L. (2003). PAUP; Phylogenetic Analysis Using Parsimony, version 4.0 b10 (Sunderland, Massachusetts: Sinauer Associates).
  46. Tangphatsornruang, S., Sangsrakru, D., Chanprasert, J., Uthaipaisanwong, P., Yoocha, T., Jomchai, N., and Tragoonrung, S. (2010). The chloroplast genome sequence of mungbean (Vigna radiata) determined by high-throughput pyrosequencing: structural organization and phylogenetic relationships. DNA Res. 17, 11-22. https://doi.org/10.1093/dnares/dsp025
  47. Taylor, E.L., Taylor, T.N., and Krings, M. (2009). Paleobotany: The Biology and Evolution of Fossil Plants (Burlington, Massachusetts: Elservier Ltd.).
  48. Thiede, J., Schmidt, S.A., and Rudolph, B. (2007) Phylogenetic implication of the chloroplast rpoC1 intron loss in the Aizoaceae (Caryophyllales). Biochem. Syst. Ecol. 35, 372-380. https://doi.org/10.1016/j.bse.2006.12.010
  49. Tidwell, W.D., and Ash, S.R. (1994). A review of selected Triassic to Early Cretaceous ferns. J. Plant Res. 107, 417-442. https://doi.org/10.1007/BF02344066
  50. Tryon, A., and Lugardon, B. (1991). Spores of the Pteridophyta. (New York: Springer-Verlag).
  51. Vetrivel, U., Arunkumar, V., and Dorairaj, S. (2007). ACUA: a software tool for automated codon usage analysis. Bioinformation 2, 62-63. https://doi.org/10.6026/97320630002062
  52. Wallace, R.S., and Cota, J.H. (1996). An intron loss in the chloroplast gene rpoC1 supports a monophyletic origin for the subfamily Cactoideae of the Cactaceae. Curr. Genet. 29, 275-281. https://doi.org/10.1007/BF02221558
  53. Wolf, P.G., Pryer, K.M., Ueda, K., Ito, M., Sano, R., Gastony, G., Yokoyama, J., Manhart, J., Murakami, N., and Crane, E. (1995). Fern phylogeny based on rbcL nucleotide sequences. Am. Fern J. 85, 134-181. https://doi.org/10.2307/1547807
  54. Wolf, P.G., Rowe, C.A., Sinclair, R.B., and Hasebe, M. (2003). Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris L. DNA Res. 10, 59-65. https://doi.org/10.1093/dnares/10.2.59
  55. Wolf, P.G., Rowe, C.A., and Hasebe, M. (2004). High levels of RNA editing in a vascular plant chloroplast genome: analysis of transcripts from the fern Adiantum capillus-veneris. Gene 339, 89-97. https://doi.org/10.1016/j.gene.2004.06.018
  56. Wolf, P.G., Roper, J.M., and Duffy, A.M. (2010). The evolution of chloroplast genome structure in ferns. Genome 53, 731-738. https://doi.org/10.1139/G10-061
  57. Wolf, P.G., Der, J.P., Duffy, A.M., Davidson, J.B., Grusz, A.L., and Pryer, K.M. (2011). The evolution of chloroplast genes and genomes in ferns. Plant Mol. Biol. 76, 251-261. https://doi.org/10.1007/s11103-010-9706-4
  58. Wright, F. (1990). The ‘effective number of codons' used in a gene. Gene 87, 23-29. https://doi.org/10.1016/0378-1119(90)90491-9
  59. Wu, C.S., Wang, Y.N., Liu, S.M., and Chaw, S.M. (2007). Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp proteincoding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol. Biol. Evol. 24, 1366-1379. https://doi.org/10.1093/molbev/msm059
  60. Wyman, S.K., Jansen, R.K., and Boore, J.L. (2004). Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20, 3252-3255. https://doi.org/10.1093/bioinformatics/bth352
  61. Yatabe, Y., Nishida, H., and Murakami, N. (1999). Phylogeny of Osmundaceae inferred from rbcL nucleotide sequences and comparison to the fossil evidences. J. Plant Res. 112, 397-404. https://doi.org/10.1007/PL00013894
  62. Yi, D.K., and Kim, K.J. (2012). Complete chloroplast genome sequences of important oilseed crop Sesamum indicum L. PLoS One 7, e35872. https://doi.org/10.1371/journal.pone.0035872
  63. Yi, D.K., Lee, H.L., Sun, B.Y., Chung, M.Y., and Kim, K.J. (2012). The complete chloroplast DNA sequence of Eleutherococcus senticosus (Araliaceae); comparative evolutionary analyses with other three asterids. Mol. Cells 33, 497-508. https://doi.org/10.1007/s10059-012-2281-6

Cited by

  1. Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny vol.210, pp.3, 2016, https://doi.org/10.1111/nph.13833
  2. Synonymous Codon Usage Bias in Plant Mitochondrial Genes Is Associated with Intron Number and Mirrors Species Evolution vol.10, pp.6, 2015, https://doi.org/10.1371/journal.pone.0131508
  3. Seven New Complete Plastome Sequences Reveal Rampant Independent Loss of the ndh Gene Family across Orchids and Associated Instability of the Inverted Repeat/Small Single-Copy Region Boundaries vol.10, pp.11, 2015, https://doi.org/10.1371/journal.pone.0142215
  4. Variable Frequency of Plastid RNA Editing among Ferns and Repeated Loss of Uridine-to-Cytidine Editing from Vascular Plants vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0117075
  5. Horsetails are the sister group to all other monilophytes and Marattiales are sister to leptosporangiate ferns vol.90, 2015, https://doi.org/10.1016/j.ympev.2015.05.008
  6. Phylogenetic Relationships of the Fern Cyrtomium falcatum (Dryopteridaceae) from Dokdo Island, Sea of East Japan, Based on Chloroplast Genome Sequencing vol.7, pp.12, 2016, https://doi.org/10.3390/genes7120115
  7. Chloroplast phylogenomics resolves key relationships in ferns vol.53, pp.5, 2015, https://doi.org/10.1111/jse.12180
  8. Genes Translocated into the Plastid Inverted Repeat Show Decelerated Substitution Rates and Elevated GC Content vol.8, pp.8, 2016, https://doi.org/10.1093/gbe/evw167
  9. Reverse U-to-C editing exceeds C-to-U RNA editing in some ferns – a monilophyte-wide comparison of chloroplast and mitochondrial RNA editing suggests independent evolution of the two processes in both organelles vol.16, pp.1, 2016, https://doi.org/10.1186/s12862-016-0707-z
  10. Complete chloroplast genome sequence of the medical fern Drynaria roosii and its phylogenetic analysis vol.2, pp.1, 2017, https://doi.org/10.1080/23802359.2016.1275835
  11. Evolution of six novel ORFs in the plastome of Mankyua chejuense and phylogeny of eusporangiate ferns vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-34825-6
  12. Land Plant Molecular Phylogenetics: A Review with Comments on Evaluating Incongruence Among Phylogenies pp.1549-7836, 2018, https://doi.org/10.1080/07352689.2018.1482443
  13. species pp.16744918, 2019, https://doi.org/10.1111/jse.12453
  14. Order-level fern plastome phylogenomics: new insights from Hymenophyllales vol.105, pp.9, 2018, https://doi.org/10.1002/ajb2.1152
  15. Full plastome sequence of the fern Vandenboschia speciosa (Hymenophyllales): structural singularities and evolutionary insights vol.132, pp.1, 2019, https://doi.org/10.1007/s10265-018-1077-y
  16. Synonymous Codon Usage Bias in the Plastid Genome is Unrelated to Gene Structure and Shows Evolutionary Heterogeneity vol.11, pp.None, 2014, https://doi.org/10.4137/ebo.s22566
  17. Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae) vol.12, pp.11, 2017, https://doi.org/10.1371/journal.pone.0187318
  18. Comparative analysis of inverted repeats of polypod fern (Polypodiales) plastomes reveals two hypervariable regions vol.17, pp.suppl2, 2014, https://doi.org/10.1186/s12870-017-1195-z
  19. Quillworts from the Amazon: A multidisciplinary populational study on Isoetes serracarajensis and Isoetes cangae vol.13, pp.8, 2018, https://doi.org/10.1371/journal.pone.0201417
  20. Organellar genome analysis reveals endosymbiotic gene transfers in tomato vol.13, pp.9, 2014, https://doi.org/10.1371/journal.pone.0202279
  21. Mobile Elements Shape Plastome Evolution in Ferns vol.10, pp.10, 2018, https://doi.org/10.1093/gbe/evy189
  22. Dynamism in plastome structure observed across the phylogenetic tree of ferns vol.190, pp.3, 2014, https://doi.org/10.1093/botlinnean/boz020
  23. Plastid genome and composition analysis of two medical ferns: Dryopteris crassirhizoma Nakai and Osmunda japonica Thunb. vol.14, pp.None, 2014, https://doi.org/10.1186/s13020-019-0230-4
  24. Insights Into Chloroplast Genome Evolution Across Opuntioideae (Cactaceae) Reveals Robust Yet Sometimes Conflicting Phylogenetic Topologies vol.11, pp.None, 2014, https://doi.org/10.3389/fpls.2020.00729
  25. Organellomic data sets confirm a cryptic consensus on (unrooted) land‐plant relationships and provide new insights into bryophyte molecular evolution vol.107, pp.1, 2014, https://doi.org/10.1002/ajb2.1397
  26. Phylogenomics indicates the “living fossil” Isoetes diversified in the Cenozoic vol.15, pp.6, 2020, https://doi.org/10.1371/journal.pone.0227525
  27. Patterns and Rates of Plastid rps 12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-66219-y
  28. The dynamic evolution of mobile open reading frames in plastomes of Hymenophyllum Sm. and new insight on Hymenophyllum coreanum Nakai vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-68000-7
  29. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae vol.104, pp.6, 2020, https://doi.org/10.1111/tpj.15028
  30. Exploring the phylogeny of the marattialean ferns vol.36, pp.6, 2014, https://doi.org/10.1111/cla.12419