DOI QR코드

DOI QR Code

RNA Binding Protein-Mediated Post-Transcriptional Gene Regulation in Medulloblastoma

  • Bish, Rebecca (New York University, Center for Genomics and Systems Biology) ;
  • Vogel, Christine (New York University, Center for Genomics and Systems Biology)
  • 투고 : 2014.01.14
  • 심사 : 2014.01.17
  • 발행 : 2014.05.31

초록

Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.

키워드

참고문헌

  1. Abdelhaleem, M. (2004). Do human RNA helicases have a role in cancer? Biochim. Biophys. Acta 1704, 37-46.
  2. Adamson, D.C., Shi, Q., Wortham, M., Northcott, P.A., Di, C., Duncan, C.G., Li, J., McLendon, R.E., Bigner, D.D., Taylor, M.D., et al. (2010). OTX2 is critical for the maintenance and progression of Shh-independent medulloblastomas. Cancer Res. 70, 181-191. https://doi.org/10.1158/0008-5472.CAN-09-2331
  3. Ashour, A.E., Jamal, S., Cheryan, V.T., Muthu, M., Zoheir, K.M., Alafeefy, A.M., Abd-Allah, A.R., Levi, E., Tarca, A.L., Polin, L.A., et al. (2013). CARP-1 functional mimetics: a novel class of small molecule inhibitors of medulloblastoma cell growth. PLoS One 8, e66733. https://doi.org/10.1371/journal.pone.0066733
  4. Baltz, A.G., Munschauer, M., Schwanhausser, B., Vasile, A., Murakawa, Y., Schueler, M., Youngs, N., Penfold-Brown, D., Drew, K., Milek, M., et al. (2012). The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46, 674-690. https://doi.org/10.1016/j.molcel.2012.05.021
  5. Battelli, C., Nikopoulos, G.N., Mitchell, J.G., and Verdi, J.M. (2006). The RNA-binding protein Musashi-1 regulates neural development through the translational repression of p21WAF-1. Mol. Cell Neurosci. 31, 85-96. https://doi.org/10.1016/j.mcn.2005.09.003
  6. Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B.M., Strein, C., Davey, N.E., Humphreys, D.T., Preiss, T., Steinmetz, L.M., et al. (2012). Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149, 1393-1406. https://doi.org/10.1016/j.cell.2012.04.031
  7. Castello, A., Fischer, B., Hentze, M.W., and Preiss, T. (2013). RNAbinding proteins in Mendelian disease. Trends Genet. 29, 318-327. https://doi.org/10.1016/j.tig.2013.01.004
  8. CBTRUS (2012). CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2004-2008 (March 23, 2012 Revision). Hinsdale, IL, Central Brain Tumor Registry of the United States.
  9. Cho, Y.J., Tsherniak, A., Tamayo, P., Santagata, S., Ligon, A., Greulich, H., Berhoukim, R., Amani, V., Goumnerova, L., Eberhart, C.G., et al. (2011). Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29, 1424-1430. https://doi.org/10.1200/JCO.2010.28.5148
  10. Choi, Y.J., and Lee, S.G. (2012). The DEAD-box RNA helicase DDX3 interacts with DDX5, co-localizes with it in the cytoplasm during the G2/M phase of the cycle, and affects its shuttling during mRNP export. J. Cell Biochem. 113, 985-996. https://doi.org/10.1002/jcb.23428
  11. Clark, J., Lu, Y.J., Sidhar, S.K., Parker, C., Gill, S., Smedley, D., Hamoudi, R., Linehan, W.M., Shipley, J., and Cooper, C.S. (1997). Fusion of splicing factor genes PSF and NonO (p54nrb) to the TFE3 gene in papillary renal cell carcinoma. Oncogene 15, 2233-2239. https://doi.org/10.1038/sj.onc.1201394
  12. Clifford, S.C., Lusher, M.E., Lindsey, J.C., Langdon, J.A., Gilbertson, R.J., Straughton, D., and Ellison, D.W. (2006). Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5, 2666-2670. https://doi.org/10.4161/cc.5.22.3446
  13. Cruciat, C.M., Dolde, C., de Groot, R.E., Ohkawara, B., Reinhard, C., Korswagen, H.C., and Niehrs, C. (2013). RNA helicase DDX3 is a regulatory subunit of casein kinase 1 in Wnt-beta-catenin signaling. Science 339, 1436-1441. https://doi.org/10.1126/science.1231499
  14. Daugeron, M.C., and Linder, P. (1998). Dbp7p, a putative ATPdependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. RNA 4, 566-581. https://doi.org/10.1017/S1355838298980190
  15. Di, C., Liao, S., Adamson, D.C., Parrett, T.J., Broderick, D.K., Shi, Q., Lengauer, C., Cummins, J.M., Velculescu, V.E., Fults, D.W., et al. (2005). Identification of OTX2 as a medulloblastoma oncogene whose product can be targeted by all-trans retinoic acid. Cancer Res. 65, 919-924.
  16. Dubuc, A.M., Remke, M., Korshunov, A., Northcott, P.A., Zhan, S.H., Mendez-Lago, M., Kool, M., Jones, D.T., Unterberger, A., Morrissy, A.S., et al. (2013). Aberrant patterns of H3K4 and H3K27 histone lysine methylation occur across subgroups in medulloblastoma. Acta Neuropathol. 125, 373-384. https://doi.org/10.1007/s00401-012-1070-9
  17. Epple, L.M., Griffiths, S.G., Dechkovskaia, A.M., Dusto, N.L., White, J., Ouellette, R.J., Anchordoquy, T.J., Bemis, L.T., and Graner, M.W. (2012). Medulloblastoma exosome proteomics yield functional roles for extracellular vesicles. PLoS One 7, e42064. https://doi.org/10.1371/journal.pone.0042064
  18. Fan, X., and Eberhart, C.G. (2008). Medulloblastoma stem cells. J. Clin. Oncol. 26, 2821-2827. https://doi.org/10.1200/JCO.2007.15.2264
  19. Fogarty, M.P., Kessler, J.D., and Wechsler-Reya, R.J. (2005). Morphing into cancer: the role of developmental signaling pathways in brain tumor formation. J. Neurobiol. 64, 458-475. https://doi.org/10.1002/neu.20166
  20. Forbes, S.A., Bindal, N., Bamford, S., Cole, C., Kok, C.Y., Beare, D., Jia, M., Shepherd, R., Leung, K., Menzies, A., et al. (2011). COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 39, D945-950. https://doi.org/10.1093/nar/gkq929
  21. Francois, S., D'rlando, C., Fatone, T., Touvier, T., Pessina, P., Meneveri, R., and Brunelli, S. (2012). Necdin enhances myoblasts survival by facilitating the degradation of the mediator of apoptosis CCAR1/CARP1. PLoS One 7, e43335. https://doi.org/10.1371/journal.pone.0043335
  22. Frange, P., Alapetite, C., Gaboriaud, G., Bours, D., Zucker, J.M., Zerah, M., Brisse, H., Chevignard, M., Mosseri, V., Bouffet, E., et al. (2009). From childhood to adulthood: long-term outcome of medulloblastoma patients. The Institut Curie experience (1980-2000). J. Neurooncol. 95, 271-279. https://doi.org/10.1007/s11060-009-9927-z
  23. Fukawa, T., Ono, M., Matsuo, T., Uehara, H., Miki, T., Nakamura, Y., Kanayama, H.O., and Katagiri, T. (2012). DDX31 regulates the p53-HDM2 pathway and rRNA gene transcription through its interaction with NPM1 in renal cell carcinomas. Cancer Res. 72, 5867-5877. https://doi.org/10.1158/0008-5472.CAN-12-1645
  24. Galante, P.A., Sandhu, D., de Sousa Abreu, R., Gradassi, M., Slager, N., Vogel, C., de Souza, S.J., and Penalva, L.O. (2009). A comprehensive in silico expression analysis of RNA binding proteins in normal and tumor tissue: Identification of potential players in tumor formation. RNA Biol. 6, 426-433. https://doi.org/10.4161/rna.6.4.8841
  25. Geissler, R., Golbik, R.P., and Behrens, S.E. (2012). The DEADbox helicase DDX3 supports the assembly of functional 80S ribosomes. Nucleic Acids Res. 40, 4998-5011. https://doi.org/10.1093/nar/gks070
  26. Gibson, P., Tong, Y., Robinson, G., Thompson, M.C., Currle, D.S., Eden, C., Kranenburg, T.A., Hogg, T., Poppleton, H., Martin, J., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature 468, 1095-1099. https://doi.org/10.1038/nature09587
  27. Glisovic, T., Bachorik, J.L., Yong, J., and Dreyfuss, G. (2008). RNAbinding proteins and post-transcriptional gene regulation. FEBS Lett. 582, 1977-1986. https://doi.org/10.1016/j.febslet.2008.03.004
  28. Hambardzumyan, D., Becher, O.J., and Holland, E.C. (2008a). Cancer stem cells and survival pathways. Cell Cycle 7, 1371-1378. https://doi.org/10.4161/cc.7.10.5954
  29. Hambardzumyan, D., Becher, O.J., Rosenblum, M.K., Pandolfi, P.P., Manova-Todorova, K., and Holland, E.C. (2008b). PI3K path- way regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev. 22, 436-448. https://doi.org/10.1101/gad.1627008
  30. Horisawa, K., Imai, T., Okano, H., and Yanagawa, H. (2009). 3'- Untranslated region of doublecortin mRNA is a binding target of the Musashi1 RNA-binding protein. FEBS Lett. 583, 2429-2434. https://doi.org/10.1016/j.febslet.2009.06.045
  31. Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A., Bernard, T., Binns, D., Bork, P., Burge, S., et al. (2012). InterPro in 2011: new developments in the family and domain prediction database. Nucleic Acids Res. 40, D306-312. https://doi.org/10.1093/nar/gkr948
  32. Imai, T., Tokunaga, A., Yoshida, T., Hashimoto, M., Mikoshiba, K., Weinmaster, G., Nakafuku, M., and Okano, H. (2001). The neural RNA-binding protein Musashi1 translationally regulates mammalian numb gene expression by interacting with its mRNA. Mol. Cell Biol. 21, 3888-3900. https://doi.org/10.1128/MCB.21.12.3888-3900.2001
  33. Jones, D.T., Jager, N., Kool, M., Zichner, T., Hutter, B., Sultan, M., Cho, Y.J., Pugh, T.J., Hovestadt, V., Stutz, A.M., et al. (2012). Dissecting the genomic complexity underlying medulloblastoma. Nature 488, 100-105. https://doi.org/10.1038/nature11284
  34. Jorba, N., Juarez, S., Torreira, E., Gastaminza, P., Zamarreno, N., Albar, J.P., and Ortin, J. (2008). Analysis of the interaction of influenza virus polymerase complex with human cell factors. Proteomics 8, 2077-2088. https://doi.org/10.1002/pmic.200700508
  35. Kaderali, Z., Lamberti-Pasculli, M., and Rutka, J.T. (2009). The changing epidemiology of paediatric brain tumours: a review from the Hospital for Sick Children. Childs Nerv. Syst. 25, 787-793. https://doi.org/10.1007/s00381-008-0771-9
  36. Kawauchi, D., Robinson, G., Uziel, T., Gibson, P., Rehg, J., Gao, C., Finkelstein, D., Qu, C., Pounds, S., Ellison, D.W., et al. (2012). A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21, 168-180. https://doi.org/10.1016/j.ccr.2011.12.023
  37. Kayahara, T., Sawada, M., Takaishi, S., Fukui, H., Seno, H., Fukuzawa, H., Suzuki, K., Hiai, H., Kageyama, R., Okano, H., et al. (2003). Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett. 535, 131-135. https://doi.org/10.1016/S0014-5793(02)03896-6
  38. Kim, J.H., Yang, C.K., Heo, K., Roeder, R.G., An, W., and Stallcup, M.R. (2008). CCAR1, a key regulator of mediator complex recruitment to nuclear receptor transcription complexes. Mol. Cell 31, 510-519. https://doi.org/10.1016/j.molcel.2008.08.001
  39. Klass, D.M., Scheibe, M., Butter, F., Hogan, G.J., Mann, M., and Brown, P.O. (2013). Quantitative proteomic analysis reveals concurrent RNA-protein interactions and identifies new RNAbinding proteins in Saccharomyces cerevisiae. Genome Res. 23, 1028-1038. https://doi.org/10.1101/gr.153031.112
  40. Kolobova, E., Efimov, A., Kaverina, I., Rishi, A.K., Schrader, J.W., Ham, A.J., Larocca, M.C., and Goldenring, J.R. (2009). Microtubule-dependent association of AKAP350A and CCAR1 with RNA stress granules. Exp. Cell Res. 315, 542-555. https://doi.org/10.1016/j.yexcr.2008.11.011
  41. Kong, D.S., Kim, M.H., Park, W.Y., Suh, Y.L., Lee, J.I., Park, K., Kim, J.H., and Nam, D.H. (2008). The progression of gliomas is associated with cancer stem cell phenotype. Oncol. Rep. 19, 639-643.
  42. Kool, M., Koster, J., Bunt, J., Hasselt, N.E., Lakeman, A., van Sluis, P., Troost, D., Meeteren, N.S., Caron, H.N., Cloos, J., et al. (2008). Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLoS One 3, e3088. https://doi.org/10.1371/journal.pone.0003088
  43. Kool, M., Korshunov, A., Remke, M., Jones, D.T., Schlanstein, M., Northcott, P.A., Cho, Y.J., Koster, J., Schouten-van Meeteren, A., van Vuurden, D., et al. (2012). Molecular subgroups of medulloblastoma: an international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathol. 123, 473-484. https://doi.org/10.1007/s00401-012-0958-8
  44. Kuwako, K., Kakumoto, K., Imai, T., Igarashi, M., Hamakubo, T., Sakakibara, S., Tessier-Lavigne, M., Okano, H.J., and Okano, H. (2010). Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron 67, 407-421. https://doi.org/10.1016/j.neuron.2010.07.005
  45. Kwong, A.D., Rao, B.G., and Jeang, K.T. (2005). Viral and cellular RNA helicases as antiviral targets. Nat. Rev. Drug Discov. 4, 845-853. https://doi.org/10.1038/nrd1853
  46. Lai, M.C., Lee, Y.H., and Tarn, W.Y. (2008). The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell 19, 3847-3858. https://doi.org/10.1091/mbc.E07-12-1264
  47. Lai, M.C., Chang, W.C., Shieh, S.Y., and Tarn, W.Y. (2010). DDX3 regulates cell growth through translational control of cyclin E1. Mol. Cell. Biol. 30, 5444-5453. https://doi.org/10.1128/MCB.00560-10
  48. Lane, D. (1988). Enlarged family of putative helicases. Nature 334, 478.
  49. Lee, M.J., Hatton, B.A., Villavicencio, E.H., Khanna, P.C., Friedman, S.D., Ditzler, S., Pullar, B., Robison, K., White, K.F., Tunkey, C., et al. (2012). Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. Proc. Natl. Acad. Sci. USA 109, 7859-7864. https://doi.org/10.1073/pnas.1114718109
  50. Li, D., Peng, X., Yan, D., Tang, H., Huang, F., Yang, Y., and Peng, Z. (2011). Msi-1 is a predictor of survival and a novel therapeutic target in colon cancer. Ann. Surg. Oncol. 18, 2074-2083. https://doi.org/10.1245/s10434-011-1567-9
  51. Linder, P., and Jankowsky, E. (2011). From unwinding to clamping - the DEAD box RNA helicase family. Nat. Rev. Mol. Cell Biol. 12, 505-516. https://doi.org/10.1038/nrm3154
  52. Lindqvist, L., Oberer, M., Reibarkh, M., Cencic, R., Bordeleau, M.E,. Vogt, E., Marintchev, A., Tanaka, J., Fagotto, F., Altmann, M., et al. (2008). Selective pharmacological targeting of a DEAD box RNA helicase. PLoS One 3, e1583. https://doi.org/10.1371/journal.pone.0001583
  53. Liu, D.C., Yang, Z.L., and Jiang, S. (2010). Identification of musashi-1 and ALDH1 as carcinogenesis, progression, and poor-prognosis related biomarkers for gallbladder adenocarcinoma. Cancer Biomark 8, 113-121.
  54. Lorkovic, Z.J. (2012). RNA binding proteins. Austin, Tex., Landes Bioscience.
  55. Moghbeli, M., Forghanifard, M.M., Aarabi, A., Mansourian, A., and Abbaszadegan, M.R. (2013). Clinicopathological sex- related relevance of Musashi1 mRNA expression in esophageal squamous cell carcinoma patients. Pathol. Oncol Res. [Epub ahead of print]
  56. Muto, J., Imai, T., Ogawa, D., Nishimoto, Y., Okada, Y., Mabuchi, Y., Kawase, T., Iwanami, A., Mischel, P.S., Saya, H., et al. (2012). RNA-binding protein Musashi1 modulates glioma cell growth through the post-transcriptional regulation of Notch and PI3 kinase/Akt signaling pathways. PLoS One 7, e33431. https://doi.org/10.1371/journal.pone.0033431
  57. Nakamura, M., Okano, H., Blendy, J.A., and Montell, C. (1994). Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron 13, 67-81. https://doi.org/10.1016/0896-6273(94)90460-X
  58. Nakano, A., Kanemura, Y., Mori, K., Kodama, E., Yamamoto, A., Sakamoto, H., Nakamura, Y., Okano, H., Yamasaki, M., and Arita, N. (2007). Expression of the Neural RNA-binding protein Musashi1 in pediatric brain tumors. Pediatr. Neurosurg. 43, 279-284. https://doi.org/10.1159/000103307
  59. Northcott, P.A., Korshunov, A., Witt, H., Hielscher, T., Eberhart, C.G., Mack, S., Bouffet, E., Clifford, S.C., Hawkins, C.E., French, P., et al. (2011). Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29, 1408-1414. https://doi.org/10.1200/JCO.2009.27.4324
  60. Northcott, P.A., Korshunov, A., Pfister, S.M., and Taylor, M.D. (2012a). The clinical implications of medulloblastoma subgroups. Nat. Rev. Neurol. 8, 340-351. https://doi.org/10.1038/nrneurol.2012.78
  61. Northcott, P.A., Shih, D.J., Peacock, J., Garzia, L., Morrissy, A.S., Zichner, T., Stutz, A.M., Korshunov, A., Reimand, J., Schumacher, S.E., et al. (2012b). Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488, 49-56. https://doi.org/10.1038/nature11327
  62. Owsianka, A.M., and Patel, A.H. (1999). Hepatitis C virus core protein interacts with a human DEAD box protein DDX3. Virology 257, 330-340. https://doi.org/10.1006/viro.1999.9659
  63. Packer, R.J., and Vezina, G. (2008). Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch. Neurol. 65, 1419-1424. https://doi.org/10.1001/archneur.65.11.1419
  64. Pei, Y., Moore, C.E., Wang, J., Tewari, A.K., Eroshkin, A., Cho, Y.J., Witt, H., Korshunov, A., Read, T.A., Sun, J.L., et al. (2012). An animal model of MYC-driven medulloblastoma. Cancer Cell 21, 155-167. https://doi.org/10.1016/j.ccr.2011.12.021
  65. Pek, J.W., and Kai, T. (2011). DEAD-box RNA helicase Belle/DDX3 and the RNA interference pathway promote mitotic chromosome segregation. Proc. Natl. Acad. Sci. USA 108, 12007-12012. https://doi.org/10.1073/pnas.1106245108
  66. Pugh, T.J., Weeraratne, S.D., Archer, T.C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., Carneiro, M.O., Carter, S.L., Cibulskis, K., Erlich, R.L., et al. (2012). Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488, 106-110. https://doi.org/10.1038/nature11329
  67. Puliyappadamba, V.T., Wu, W., Bevis, D., Zhang, L., Polin, L., Kilkuskie, R., Finley, R.L. Jr., Larsen, S.D., Levi, E., Miller, F.R., et al. (2011). Antagonists of anaphase-promoting complex (APC)-2-cell cycle and apoptosis regulatory protein (CARP)-1 interaction are novel regulators of cell growth and apoptosis. J. Biol. Chem. 286, 38000-38017. https://doi.org/10.1074/jbc.M111.222398
  68. Putnam, A.A., and Jankowsky, E. (2013). DEAD-box helicases as integrators of RNA, nucleotide and protein binding. Biochim. Biophys. Acta 1829, 884-893. https://doi.org/10.1016/j.bbagrm.2013.02.002
  69. Radi, M., Falchi, F., Garbelli, A., Samuele, A., Bernardo, V., Paolucci, S., Baldanti, F., Schenone, S., Manetti, F., Maga, G., et al. (2012). Discovery of the first small molecule inhibitor of human DDX3 specifically designed to target the RNA binding site: towards the next generation HIV-1 inhibitors. Bioorg. Med. Chem. Lett. 22, 2094-2098. https://doi.org/10.1016/j.bmcl.2011.12.135
  70. Raffel, C., Jenkins, R.B., Frederick, L., Hebrink, D., Alderete, B., Fults, D.W., and James, C.D. (1997). Sporadic medulloblastomas contain PTCH mutations. Cancer Res. 57, 842-845.
  71. Reifenberger, J., Wolter, M., Weber, R.G., Megahed, M., Ruzicka, T., Lichter, P., and Reifenberger, G. (1998). Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798-1803.
  72. Remke, M., Hielscher, T., Korshunov, A., Northcott, P.A., Bender, S., Kool, M., Westermann, F., Benner, A., Cin, H., Ryzhova, M., et al. (2011). FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma. J. Clin. Oncol. 29, 3852-3861. https://doi.org/10.1200/JCO.2011.36.2798
  73. Remke, M., Ramaswamy, V., Peacock, J., Shih, D.J., Koelsche, C., Northcott, P.A., Hill, N., Cavalli, F.M., Kool, M., Wang, X., et al. (2013). TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol. 126, 917-929. https://doi.org/10.1007/s00401-013-1198-2
  74. Richter, K., Good, P.J., and Dawid, I.B. (1990). A developmentally regulated, nervous system-specific gene in Xenopus encodes a putative RNA-binding protein. New Biol. 2, 556-565.
  75. Rishi, A.K., Zhang, L., Boyanapalli, M., Wali, A., Mohammad, R.M., Yu, Y., Fontana, J.A., Hatfield, J.S., Dawson, M.I., Majumdar, A.P., et al. (2003). Identification and characterization of a cell cycle and apoptosis regulatory protein-1 as a novel mediator of apoptosis signaling by retinoid CD437. J. Biol. Chem. 278, 33422-33435. https://doi.org/10.1074/jbc.M303173200
  76. Rishi, A.K., Zhang, L., Yu, Y., Jiang, Y., Nautiyal, J., Wali, A., Fontana, J.A., Levi, E., and Majumdar, A.P. (2006). Cell cycleand apoptosis-regulatory protein-1 is involved in apoptosis signaling by epidermal growth factor receptor. J. Biol. Chem. 281, 13188-13198. https://doi.org/10.1074/jbc.M512279200
  77. Robinson, G., Parker, M., Kranenburg, T.A., Lu, C., Chen, X., Ding, L., Phoenix, T.N., Hedlund, E., Wei, L., Zhu, X., et al. (2012). Novel mutations target distinct subgroups of medulloblastoma. Nature 488, 43-48. https://doi.org/10.1038/nature11213
  78. Sakakibara, S., and Okano, H. (1997). Expression of neural RNAbinding proteins in the postnatal CNS: implications of their roles in neuronal and glial cell development. J. Neurosci. 17, 8300-8312.
  79. Sakakibara, S., Imai, T., Hamaguchi, K., Okabe, M., Aruga, J., Nakajima, K., Yasutomi, D., Nagata, T., Kurihara, Y., Uesugi, S., et al. (1996). Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230-242. https://doi.org/10.1006/dbio.1996.0130
  80. Sanchez-Diaz, P.C., Burton, T.L., Burns, S.C., Hung, J.Y., and Penalva, L.O. (2008). Musashi1 modulates cell proliferation genes in the medulloblastoma cell line Daoy. BMC Cancer 8, 280. https://doi.org/10.1186/1471-2407-8-280
  81. Sawyers, C. (2004). Targeted cancer therapy. Nature 432, 294-297. https://doi.org/10.1038/nature03095
  82. Scherrer, T., Mittal, N., Janga, S.C., and Gerber, A.P. (2010). A screen for RNA-binding proteins in yeast indicates dual functions for many enzymes. PLoS One 5, e15499. https://doi.org/10.1371/journal.pone.0015499
  83. Schiffner, S., Zimara, N., Schmid, R., and Bosserhoff, A.K. (2011). p54nrb is a new regulator of progression of malignant melanoma. Carcinogenesis 32, 1176-1182. https://doi.org/10.1093/carcin/bgr103
  84. Schroder, M. (2010). Human DEAD-box protein 3 has multiple functions in gene regulation and cell cycle control and is a prime target for viral manipulation. Biochem. Pharmacol. 79, 297-306. https://doi.org/10.1016/j.bcp.2009.08.032
  85. Schroder, M. (2011). Viruses and the human DEAD-box helicase DDX3: inhibition or exploitation? Biochem. Soc. Trans. 39, 679-683. https://doi.org/10.1042/BST0390679
  86. Schuller, U., Heine, V.M., Mao, J., Kho, A.T., Dillon, A.K., Han, Y.G., Huillard, E., Sun, T., Ligon, A.H., Qian, Y., et al. (2008). Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123-134. https://doi.org/10.1016/j.ccr.2008.07.005
  87. Schwanhausser, B., Busse, D., Li, N., Dittmar, G., Schuchhardt, J., Wolf, J., Chen, W., and Selbach, M. (2011). Global quantification of mammalian gene expression control. Nature 473, 337-342. https://doi.org/10.1038/nature10098
  88. Smoll, N.R. (2012). Relative survival of childhood and adult medulloblastomas and primitive neuroectodermal tumors (PNETs). Cancer 118, 1313-1322. https://doi.org/10.1002/cncr.26387
  89. Soto-Rifo, R., Rubilar, P.S., Limousin, T., de Breyne, S., Decimo, D., and Ohlmann, T. (2012). DEAD-box protein DDX3 associates with eIF4F to promote translation of selected mRNAs. EMBO J. 31, 3745-3756. https://doi.org/10.1038/emboj.2012.220
  90. Soulat, D., Burckstummer, T., Westermayer, S., Goncalves, A., Bauch, A., Stefanovic, A., Hantschel, O., Bennett, K.L., Decker, T., and Superti-Furga, G. (2008). The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135-2146. https://doi.org/10.1038/emboj.2008.126
  91. Sugiyama-Nakagiri, Y., Akiyama, M., Shibata, S., Okano, H., and Shimizu, H. (2006). Expression of RNA-binding protein Musashi in hair follicle development and hair cycle progression. Am. J. Pathol. 168, 80-92. https://doi.org/10.2353/ajpath.2006.050469
  92. Sun, M., Zhou, T., Jonasch, E., and Jope, R.S. (2013). DDX3 regulates DNA damage-induced apoptosis and p53 stabilization. Biochim. Biophys. Acta 1833, 1489-1497. https://doi.org/10.1016/j.bbamcr.2013.02.026
  93. Sureban, S.M., May, R., George, R.J., Dieckgraefe, B.K., McLeod, H.L., Ramalingam, S., Bishnupuri, K.S., Natarajan, G., Anant, S., and Houchen, C.W. (2008). Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo. Gastroenterology 134, 1448-1458. https://doi.org/10.1053/j.gastro.2008.02.057
  94. Thompson, M.C., Fuller, C., Hogg, T.L., Dalton, J., Finkelstein, D., Lau, C.C., Chintagumpala, M., Adesina, A., Ashley, D.M., Kellie, S.J., et al. (2006). Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24, 1924-1931. https://doi.org/10.1200/JCO.2005.04.4974
  95. Toda, M., Iizuka, Y., Yu, W., Imai, T., Ikeda, E., Yoshida, K., Kawase, T., Kawakami, Y., Okano, H., and Uyemura, K. (2001). Expression of the neural RNA-binding protein Musashi1 in human gliomas. Glia 34, 1-7. https://doi.org/10.1002/glia.1034
  96. Tsvetanova, N.G., Klass, D.M., Salzman, J., and Brown, P.O. (2010). Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PLoS One 5, pii: e12671. https://doi.org/10.1371/journal.pone.0012671
  97. Vo, D.T., Subramaniam, D., Remke, M., Burton, T.L., Uren, P.J., Gelfond, J.A., de Sousa Abreu, R., Burns, S.C., Qiao, M., Suresh, U., et al. (2012). The RNA-binding protein Musashi1 affects medulloblastoma growth via a network of cancer-related genes and is an indicator of poor prognosis. Am. J. Pathol. 181, 1762-1772. https://doi.org/10.1016/j.ajpath.2012.07.031
  98. Vogel, C., Abreu Rde, S., Ko, D., Le, S.Y., Shapiro, B.A., Burns, S.C., Sandhu, D., Boutz, D.R., Marcotte, E.M., and Penalva, L.O. (2010). Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol. Syst. Biol. 6, 400.
  99. Wang, X.Y., Yin, Y., Yuan, H., Sakamaki, T., Okano, H., and Glazer, R.I. (2008). Musashi1 modulates mammary progenitor cell expansion through proliferin-mediated activation of the Wnt and Notch pathways. Mol. Cell. Biol. 28, 3589-3599. https://doi.org/10.1128/MCB.00040-08
  100. Wang, X.Y., Penalva, L.O., Yuan, H., Linnoila, R.I., Lu, J., Okano, H., and Glazer, R.I. (2010). Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol. Cancer 9, 221. https://doi.org/10.1186/1476-4598-9-221
  101. Wang, X.Y., Yu, H., Linnoila, R.I., Li, L., Li, D., Mo, B., Okano, H., Penalva, L.O., and Glazer, R.I. (2013). Musashi1 as a potential thera- peutic target and diagnostic marker for lung cancer. Oncotarget 4, 739-750.
  102. Wilkie, G.S., Dickson, K.S., and Gray, N.K. (2003). Regulation of mRNA translation by 5'- and 3'-UTR-binding factors. Trends Biochem. Sci. 28, 182-188. https://doi.org/10.1016/S0968-0004(03)00051-3
  103. Wilson, D., Pethica, R., Zhou, Y., Talbot, C., Vogel, C., Madera, M., Chothia, C., and Gough, J. (2009). SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny. Nucleic Acids Res. 37, D380-386. https://doi.org/10.1093/nar/gkn762
  104. Yang, Z.J., Ellis, T., Markant, S.L., Read, T.A., Kessler, J.D., Bourboulas, M., Schuller, U., Machold, R., Fishell, G., Rowitch, D.H., et al. (2008). Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14, 135-145. https://doi.org/10.1016/j.ccr.2008.07.003
  105. Yauch, R.L., Dijkgraaf, G.J., Alicke, B., Januario, T., Ahn, C.P., Holcomb, T., Pujara, K., Stinson, J., Callahan, C.A., Tang, T., et al. (2009). Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572-574. https://doi.org/10.1126/science.1179386
  106. Yedavalli, V.S., Neuveut, C., Chi, Y.H., Kleiman, L., and Jeang, K.T. (2004). Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell 119, 381-392. https://doi.org/10.1016/j.cell.2004.09.029
  107. Yokota, N., Mainprize, T.G., Taylor, M.D., Kohata, T., Loreto, M.,Ueda, S., Dura, W., Grajkowska, W., Kuo, J.S., and Rutka, J.T.(2004). Identification of differentially expressed and developmentallyregulated genes in medulloblastoma using suppressionsubtraction hybridization. Oncogene 23, 3444-3453. https://doi.org/10.1038/sj.onc.1207475
  108. Zhou, J., Shum, K.T., Burnett, J.C., and Rossi, J.J. (2013). Nanoparticle-based delivery of RNAi therapeutics: progress and challenges. Pharmaceuticals 6, 85-107. https://doi.org/10.3390/ph6010085

피인용 문헌

  1. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma vol.47, pp.9, 2015, https://doi.org/10.1038/ng.3358
  2. Neural stem and progenitor cell fate transition requires regulation of Musashi1 function vol.15, pp.1, 2015, https://doi.org/10.1186/s12861-015-0064-y
  3. ceRNA in cancer: possible functions and clinical implications vol.52, pp.10, 2015, https://doi.org/10.1136/jmedgenet-2015-103334
  4. Identification and in silico analysis of cattle DExH/D box RNA helicases vol.5, pp.1, 2016, https://doi.org/10.1186/s40064-015-1640-0
  5. 4β-Hydroxywithanolide E Modulates Alternative Splicing of Apoptotic Genes in Human Hepatocellular Carcinoma Huh-7 Cells vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-07472-6
  6. The DEAD-Box RNA Helicase DDX3 Interacts with m 6 A RNA Demethylase ALKBH5 vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/8596135
  7. Analysis of NRAS RNA G-quadruplex binding proteins reveals DDX3X as a novel interactor of cellular G-quadruplex containing transcripts vol.46, pp.21, 2014, https://doi.org/10.1093/nar/gky861
  8. DEAD-box RNA helicases Dbp2, Ded1 and Mss116 bind to G-quadruplex nucleic acids and destabilize G-quadruplex RNA vol.55, pp.31, 2014, https://doi.org/10.1039/c8cc10091h
  9. LncRNA FENDRRattenuates adriamycin resistance via suppressingMDR1 expression through sponging HuR and miR‐184 in chronic myelogenous leukaemia cells vol.593, pp.15, 2014, https://doi.org/10.1002/1873-3468.13480
  10. Decoding competing endogenous RNA networks for cancer biomarker discovery vol.21, pp.2, 2014, https://doi.org/10.1093/bib/bbz006
  11. The emerging roles of non-coding competing endogenous RNA in hepatocellular carcinoma vol.20, pp.1, 2014, https://doi.org/10.1186/s12935-020-01581-5
  12. A novel machine learning derived RNA-binding protein gene-based score system predicts prognosis of hepatocellular carcinoma patients vol.9, pp.None, 2014, https://doi.org/10.7717/peerj.12572
  13. MSI2 expression in adrenocortical carcinoma: Association with unfavorable prognosis and correlation with steroid and immune‐related pathways vol.122, pp.12, 2014, https://doi.org/10.1002/jcb.30153