DOI QR코드

DOI QR Code

Intelligent Controller for Constant Control of Residual Chlorine in Water Treatment Process

정수장 잔류염소 일정제어를 위한 지능형 제어기 개발

  • Received : 2013.09.01
  • Accepted : 2014.04.09
  • Published : 2014.04.25

Abstract

In this study, chlorine modeling technique based on fuzzy system is proposed to reduce the carcinogenic substance and decide the optimal chlorine injection rate, which is affected by chlorine evaporation rate in sedimentation basin according to detention time, weather and water quality. The additional chlorine meter is installed in the inlet part of sedimentation to reduce the feedback time and implement cascade control, which leads to maintaining the residual chlorine concentration decided by fuzzy rule. It helps to take a preemptive action about long time delay, the characteristics of the disinfection process, and reduce the variation of residual chlorine rate by 7.3 times and the chlorine consumption by 40,000 dollars. It made a significant contribution to supply hygienically safe drinking water.

본 논문에서는 발암물질 저감을 위하여 정수장 염소투입공정 중 전염소 주입에 따른 침전지의 염소 증발량이 주야간, 계절별 현격한 차이가 발생함에 따라 시간대별/계절별/날씨별 유입목표 잔류염소를 변경하고자 운영자의 경험에 기반한 퍼지 모델링 기법을 도입하였다. 퍼지에 의해 설정된 목표 잔류염소농도를 유지하기 위하여 침전지 유입부에 잔류염소 계측기를 추가 설치하여 피드백 Loop 시간을 최소화하였고 지연시간이 긴 시스템에 적용되는 이중 피드백 제어시스템인 캐스케이드 제어를 병행 실시하였다. 이를 통해 소독공정의 고유특성인 시간지연에 대한 선제적 대응 및 침전지 잔류염소농도 변화폭을 7.3배가량 안정화를 시키고 염소소모량을 저감하여 안정적이고 경제적인 물 공급이 가능하도록 하였다.

Keywords

References

  1. Tove A. Larsen, Kai M. Udert, Judit Lienert, "Source Separation and Decentralization for Wastewater Management", IWA Publishing, Chapter 26, pp. 383-397, 2013.
  2. D.H Kim, D.J Lee, K.P Kim, C.H Bae, H.E Ju, "Proper re-chlorine injection rate decision and effect analysis to secure residual chlorine concentration in water distribution network," Journal of korea environmental engineering, vol.32, no.10 pp. 916-927, 2010.
  3. Korea Water and Wastewater Works association, "Installation standard of drinking water facility," pp. 293, 2008.
  4. J.D Park, G.W Shin, S.T Hong, C.G Lee, "Study of automatic control for disinfection process," Journal of korea arcademia-industrial cooperation, vol.12, no.8 pp. 3644-3653, 2011. https://doi.org/10.5762/KAIS.2011.12.8.3644
  5. V.K. Chambers, J.D. Creasey, J.S. Joy, "Modeling free and total chlorine decay in potable water distribution-systems," Journal of Water Supply Research and Technology-Aqua, vol. 44, no. 2, pp. 60-69, 1995.
  6. F. Hua, J.R. West, R.A. Barker, C.F. Forster, "Modeling of chlorine decay in municipal water supplies," Water Research, vol. 33, no. 12, pp. 2735-2746, 1997.
  7. Jacob Cohen, Patricia Cohen, Stephen G. West, Leona S. Aiken, "Applied multiple regression/ correlation analysis for the behavioral sciences," Routledge, pp. 19-31, 2013.
  8. Richard O. Duda, Peter E. Hart, David G. Stoke. "Pattern Classification," Wiley, pp. 114-125, 2012.
  9. J.H Seol, Y.D Lim, "Study of position control for DC servo motor using neuro fuzzy system," Korea institute of intelligent system, vol. 7, no. 5, pp. 51-59, 1997.
  10. Jyh-Shing Roger Jang, Chuen-Tsai Sun and Eiji Mizutani. "A Computational Approach to Learning and Machine Intelligence," IEEE Transactions on automatic control, vol. 42, no. 10, pp. 1482-1484, 1997. https://doi.org/10.1109/TAC.1997.633847

Cited by

  1. Intelligent Controller for Optimal Coagulant Dosage Rate in Water Treatment Process vol.25, pp.4, 2015, https://doi.org/10.5391/JKIIS.2015.25.4.369
  2. Performance Evaluation of Motorcycle's Anti-theft Device using NFC Authentication and Solenoid Valve vol.26, pp.1, 2016, https://doi.org/10.5391/JKIIS.2016.26.1.082
  3. An Ultrasonic Multi-Beam Concentration Meter with a Neuro-Fuzzy Algorithm for Water Treatment Plants vol.15, pp.10, 2015, https://doi.org/10.3390/s151026961