DOI QR코드

DOI QR Code

인체 표면 통신을 위한 TM31 고차 모드 반원-링 인체 부착형 마이크로스트립 패치 안테나 설계

Design of a TM31 Higher Order Mode Half Circular-Ring Microstrip Patch Antenna for On-Body Communications

  • 탁진필 (한양대학교 전자컴퓨터통신공학과) ;
  • 전재성 (한양대학교 전자컴퓨터통신공학과) ;
  • 김선우 (한양대학교 전자컴퓨터통신공학과) ;
  • 최재훈 (한양대학교 전자컴퓨터통신공학과)
  • Tak, Jinpil (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Jeon, Jaesung (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Kim, Sunwoo (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Jaehoon (Department of Electronics and Computer Engineering, Hanyang University)
  • 투고 : 2013.12.26
  • 심사 : 2014.02.10
  • 발행 : 2014.05.31

초록

본 논문에서는 모노폴과 같은 방사특성을 갖고 인체 표면 간 통신을 위한 $TM_{31}$ 고차 모드 반원-링 마이크로스트립 패치 안테나를 제안하였다. 제안된 안테나는 단락 핀을 이용하여 $TM_{31}$ 고차 공진 모드를 형성하였고, 평면형임에도 불구하고 모노폴과 같은 방사특성을 갖는다. 패치안테나의 좁은 대역폭을 확장하기 위해 $TM_{31}$ 모드 C-형 반링 패치를 반원 패치에 인접시켰으며, 소형화를 위해 half mode를 사용하였다. 인체 착용환경을 고려하여 마이크로스트립 라인을 이용하여 급전하였다. 제안된 안테나는 ISM(Industrial, Scientific, and Medical) 2.45 GHz 대역(2.4~2.485 GHz)에서 $0.25{\lambda}_0{\times}0.46{\lambda}_0{\times}0.025{\lambda}_0$의 크기를 갖고, 2.38~2.49 GHz에서 4.24 %의 10-dB 반사손실 대역폭을 갖는다. 인체의 영향을 고려하기 위해 2/3 근육-등가 반고체형 모의인체를 제작하고, 이를 이용하여 안테나에 미치는 인체의 영향을 분석, 검증하였다. 또한, 실제 인체 상황에서 제안된 안테나를 통해 인체 표면 간 링크의 통신 성능 분석을 위한 실험을 수행하였다.

In this paper, a $TM_{31}$ higher order mode half circular-ring microstrip antenna with monopole-like radiation characteristic for on-body communication is proposed. By using shorting vias, $TM_{31}$ resonance mode was excited, while achieving compact low-profile antenna with monopole-like radiation characteristics. To overcome the narrow bandwidth of a patch antenna, a C-shape half ring patch with shorting vias having $TM_{31}$ mode is closely located around a half circular patch. For size reduction, half mode is adopted. The proposed antenna has the overall dimensions of $0.25{\lambda}_0{\times}0.46{\lambda}_0{\times}0.025{\lambda}_0$ at the industrial, scientific, and medical(ISM) 2.45 GHz band(2.4~2.485 GHz) and the 10-dB return loss is 4.24 % ranging from 2.38 to 2.49 GHz. To verify body effect, two-thirds muscle equivalent semi solid phantom was fabricated and used to measure the antenna performance. A communication link is analysed to investigate the effect of human-body movements and antenna locations.

키워드

참고문헌

  1. 윤영중, 이상흔, 김기준, "WBAN 안테나 설계 기술", 한국통신학회지, 25(2), pp. 32-40, 2008년 2월.
  2. 윤찬영, "WBAN U-Healthcare 모니터링 시스템 구축에 관한 연구", 한국통신학회논문지, 35(8), pp. 171-178, 2010년 8월.
  3. P. S. Hall, Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications, Norwood, MA: Artech House, Ch. 1, 2006.
  4. P. S. Hall, Y. Hao, Y. I. Nechayev, A. Alomainy, C. C. Constantinou, C. Parini, M. R. Kamarudin, T. Z. Salim, D. T. M. Hee, R. Dubrovka, A. S. Owadally, W. Song, A. Serra, P. Nepa, M. Gallo, and M. Bozzetti, "Antennas and propagation for on-body communication systems", IEEE Antennas Propagat. Mag., vol. 49, no. 3, pp. 41-58, Jun. 2007. https://doi.org/10.1109/MAP.2007.4293935
  5. S. Yoo, S. Kahng "CRLH ZOR antenna of a circular microstrip patch capacitively coupled to a circular shorted ring", PIER C, vol. 25, pp. 15-26, 2012. https://doi.org/10.2528/PIERC11072803
  6. 장건호, 강승택, "직각 링과 용량성 결합된 마이크로스트립 패치 구조의 새로운 2차원 메타 재질 구조 CRLH 0차 공진 안테나의 설계", 한국전자파학회논문지, 21(2), pp. 143-151, 2010년 2월. https://doi.org/10.5515/KJKIEES.2010.21.2.143
  7. D. Guha, Y. M. M. Antar, "New half-hemispherical dielectric resonator antenna for broadband monopole-type radiation", IEEE Trans. Antennas Propagat., vol. 54, no. 12, pp. 3621-3628, Dec. 2006. https://doi.org/10.1109/TAP.2006.886547
  8. R. Khouri, P. Ratajczak, P. Brachat, and R. Staraj, "A thin surface-wave antenna using a via-less EBG structure for 2.45 GHz on-body communication systems", Proc. 4th Eur. Conf. Antennas and Propagat.(EuCAP), Apr. 2010.
  9. F. Yang, Y. Rahmat-Samii, and A. Kishk, "Low-profile patch-fed surface wave antenna with a monopole-like radiation pattern", IET Microw. Antennas Propagat., vol. 1, no. 1, pp. 261-266, Feb. 2007. https://doi.org/10.1049/iet-map:20050290
  10. C. H. Lin, K. Saito, M. Takahashi, and K. Ito, "A compact planar inverted-F antenna for 2.45 GHz on-body communications", IEEE Trans. Antennas Propagat., vol. 60, no. 9, pp. 4422-4426, Sep. 2012. https://doi.org/10.1109/TAP.2012.2207038
  11. J. Liu, Q. Xue, H. Wong, H. W. Lai, and Y. Long, "Design and analysis of a low-profile and broadband microstrip monopolar patch antenna", IEEE Trans. Antennas Propagat., vol. 61, no. 1, pp. 11-18, Jan. 2013. https://doi.org/10.1109/TAP.2012.2214996
  12. A. Al-Zoubi, F. Yang, and A. Kishk, "A broadband center-fed circular patch-ring antenna with a monopole like radiation pattern", IEEE Trans. Antennas Propagat., vol. 57, no. 3, pp. 789-792, Mar. 2009. https://doi.org/10.1109/TAP.2008.2011406
  13. C. Delaveaud, P. Leveque, and B. Jecko, "New kind of microstrip antenna: the monopolar wire-patch antenna", IEEE Electron. Lett., vol. 30, no. 1, pp. 1-2, Jan. 1994. https://doi.org/10.1049/el:19940057
  14. G. A. Conway, W. G. Scanlon, "Antennas for over- body-surface communication at 2.45 GHz", IEEE Trans. Antennas Propagat., vol. 57, no. 4, pp. 844-855, Apr. 2009. https://doi.org/10.1109/TAP.2009.2014525
  15. R. Garg, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Norwood, MA: Artech House, pp. 441-463, Ch. 7, 2001.
  16. J. Huang, "Circularly polarized conical patterns from circular microstrip antennas", IEEE Trans. Antennas Propagat., vol. 32, no. 9, pp. 991-994, Sep. 1984. https://doi.org/10.1109/TAP.1984.1143455
  17. X. Semcad, "A FDTD-based electromagnetic simulator", ver. 14.6.9 Bernina, Schmid and Partner Eng. AG, Zurich, Switcherland, 2013.
  18. HFSS: High Frequency Structure Simulator Based on Finite Element Method, v. 15.0 ANSYS Corp., 2013.
  19. W. Hong, B. Liu, Y. Q. Wang, Q. H. Lai, and K. Wu, "Half mode substrate integrated waveguide: a new guided wave structure for microwave and millimeter wave application", Proc. Joint 31st Int. Conf. Infrared Millim. Waves 14th Int. Conf. Terahertz Electron., p. 219, Shanghai, China, Sep. 2006.
  20. C. Gabriel, "4-Cole-Cole analysis on compilation of the dielectric properties of body tissues at RF and microwave frequencies", Brooks Air Force Tech. Rep. AL/OETR-1996-0037, 1996 [Online]. Available: http://www.fcc.gov/fcc-bin/dielec.sh
  21. A. Christ, W. Kainz, E. G. Hahn, K. Honegger, M. Zefferer, E. Neufeld, W. Rascher, R. Janka, W. Bautz, J. Chen, B. Kiefer, P. Schmitt, H. Hollenbach, J. Shen, M. Oberle, D. Szczerba, A. Kam, J. W. Guag, and N. Kuster, "The virtual family-development of surface-based anatomical models of two adults and two children for dosimetric simulations", Phys. Med. Biol., vol. 55, no. 2, N23-N38, Jan. 2010. https://doi.org/10.1088/0031-9155/55/2/N01
  22. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95. 1-1999, 1999.
  23. 이순용, 서원범, 권결, 최재훈, "MICS 대역과 ISM 대역에서 인체 전기적 상수를 갖는 준(準) 고체형 플랫 팬텀 제작", 한국전자파학회논문지, 23(1), pp. 101-107, 2012년 1월. https://doi.org/10.5515/KJKIEES.2012.23.1.101
  24. S. Roy, F. Quitin, L. Liu, C. Oestges, F. Horlin, J. M. Dricot, and P. D. Doncker, "Dynamic channel modeling for multi-sensor body area networks", IEEE Trans. Antennas Propagat., vol. 61, no. 4, Apr. 2013.