DOI QR코드

DOI QR Code

Velocity based Self-Configuring Time Division Broadcasting Protocol for Periodic Messages in Vehicle-to-Vehicle Communication

차량 간 통신에서 주기적 메시지를 위한 속도 기반의 자가 구성형 시분할 브로드캐스팅 방법

  • 이동근 (한양대학교 전자컴퓨터통신학부 유비쿼터스통신 연구실) ;
  • 장상우 (한양대학교 전자컴퓨터통신학부 유비쿼터스통신 연구실) ;
  • 이상선 (한양대학교 융합전자공학부 유비쿼터스통신 연구)
  • Received : 2014.02.04
  • Accepted : 2014.03.20
  • Published : 2014.03.31

Abstract

For vehicle safety-related services using wireless communications, reliable collection of various driving informations transmitted periodically by neighbor vehicles is the most important. Every host vehicle analyses them to estimate a potential dangerous situation in a very short time and warns drivers to prevent an accident. However tremendous amount of periodic messages can cause the wireless communication in chaos and the services not in safe. In this paper, we propose a time-division broadcasting protocol to mitigate the communication congestion. It utilizes the received information of vehicle velocity and location, i.e. vehicle traffic density on a road to adjust the number of time slots in a given broadcasting period, and transmission power. The simulation results show that message reception ratio is changed to approximately 40% and channel access time also decreased from 10ms to 0.23ms.

차량 간 통신을 이용한 안전 서비스 제공을 위해서 차량 간에 서로의 위치정보 획득이 중요한 이슈가 되고 있다. 이를 위해서 주기적으로 메시지를 발생 시키고 주변 차량의 위치 변화를 감지하여 운전자에게 안전 서비스를 제공한다. 하지만 차량의 밀도가 높은 환경에서 주기적인 위치정보 메시지의 잦은 발생으로 인해 네트워크 채널이 포화 상태가 되어 송/수신에 문제가 발생한다. 본 논문은 시분할 슬롯을 이용하여 브로드캐스팅하며 차량의 속도를 이용하여 도로 위 차량 밀도를 예측하여 시분할 슬롯의 수, 전파세기를 조절하여 향상된 통신 상태를 만드는 방법을 제안한다. 네트워크 시뮬레이터를 통한 성능 평가 결과, 기존의 경쟁 모드에서 브로드캐스팅 했을 때 보다 수신율은 약 40%의 향상 보여주었고 채널 접근 시간은 10ms에서 0.23ms 로 감소한 것을 확인 할 수 있었다.

Keywords

References

  1. IEEE, "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications amendment 6: Wireless access in vehicular environments," IEEE Standard 802.11p-2010, pp. 1-51, Jul. 2010.
  2. Vehicle Safety Communications Consortium (VSCC), "VSC-A final report," Sept. 2011.
  3. J. Cha, J. I. Jung, S. W. Chang, and S. S. Lee, "RFID based the SME algorithm for the multi-lane-supported ETCS," J. KICS, vol. 37C, no. 1, pp. 8-16, Jan. 2012. https://doi.org/10.7840/KICS.2012.37C.1.8
  4. H. S. Seo, J. S. Jung, and S. S. Lee, "Scenario and network performance evaluation for a do not pass warning service based on vehicle-to-vehicle communications," J. KICS, vol. 38C, no. 3, pp. 227-232, Mar. 2013. https://doi.org/10.7840/kics.2013.38C.3.227
  5. O. K. Tonguz, N. Wisitpongphan, J. S. Parikh, F. Bai, P. Mudalige, and V. K. Sadekar, "On the broadcast storm problem in ad hoc wireless networks," in Proc. Broadband Commun. Netw. Syst., pp. 1-11, San Jose, CA, Oct. 2006.
  6. Network Simulator ns-2, from http://www.isi.edu/nsnam/ns/
  7. M. Sepulcre, J. Gozalvez, J. Harri, and H. Hartenstein, "Application-based congestion control policy for the communication channel in VANETs," IEEE Commun. Lett., vol. 14, no. 10, pp. 951-953, Oct. 2010. https://doi.org/10.1109/LCOMM.2010.091010.100345
  8. J. He, H. Chen, T. M. Chen, and W. Cheng, "Adaptive congestion control for DSRC vehicle networks," IEEE Commun. Lett., vol. 14, no. 2, pp. 127-129, Feb. 2010. https://doi.org/10.1109/LCOMM.2010.02.092002
  9. M. Torrent-Moreno, P. Santi, and H. Hartenstein, "Distributed fair transmit power adjustment for vehicular ad hoc networks," in Proc. IEEE SECON, vol. 2, pp. 479-488, Reston, VA, USA, Sept. 2006.
  10. F. Yu and S. Biswas, "Self-configuring TDMA protocols for enhancing vehicle safety with DSRC based vehicle-to-vehicle communications," IEEE J. Sel. Areas Commun., vol. 25, no. 8, pp. 1526-1537, Oct. 2007. https://doi.org/10.1109/JSAC.2007.071004
  11. S. Bai, J. Oh, and J. Jung, "Context awareness beacon scheduling scheme for congestion control in vehicle to vehicle safety communication," Ad Hoc Networks, Vol. 11, no. 7, pp. 2049-2058, Sept. 2013. https://doi.org/10.1016/j.adhoc.2012.02.014
  12. IEEE, "IEEE standard for wireless access in vehicular environments (WAVE)-multi- channel operation," IEEE Standard 1609.4-2010, pp. 1-89, Feb. 2011.
  13. B. H. Walke, S. Mangold, and L. Berlemann, IEEE 802 wireless systems, John Wiley & Sons, Ltd, Nov. 2006
  14. IEEE, Part 11, "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Medium access control (MAC) enhancements for quality of service (QoS)," IEEE 802.11e/D13.0, 2005.
  15. C. Y. Ma, T. K. Yoon, and B. K. Kim, "A study on the spacing distribution based on relative speeds between vehicles," Int. J. Highway Eng., vol. 14, no. 2, pp. 93-99, Apr. 2012.
  16. AASHTO, A policy on geometric design of highways and streets, 5th Ed., American Association of State Highway and Transportation Officials, Washington, DC., 2004.
  17. Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and H. Hartenstein, "Overhaul of ieee 802.11 modeling and simulation in ns-2," in Proc. ACM MSWiM, pp. 159-168, New York, NY, 2007.
  18. H. Noori and B. B. Olyaei, "A novel study on beaconing for VANET-based vehicle to vehicle communication probability of beacon delivery in realistic large-scale urban area using 802.11p," in Proc. SaCoNeT, vol. 1, pp. 1-6, Paris, Jun. 2013.
  19. L. Long, and R. Baldessari, "Performance evaluation of beacon congestion control algorithms for VANETs," in Proc. IEEE GLOBECOM, pp. 1-6, Houston, TX, USA, Dec. 2011.
  20. J. K. Bae and D. S. Han, "Packet transmission scheme for collecting traffic information based on vehicle speed in u-TSN system," J. IEEK, vol. 47-TC, no. 6, pp. 35-41, Jun, 2010.
  21. J. Kim, M. G. Park, and S. S. Lee, "A study on the relationship of DSRC transmit power and communication coverage for vehicle detection," in Proc. KICS Conf. Commun., 2012.