DOI QR코드

DOI QR Code

An Analysis of the Degree of Embedding between Torus Structure and Hyper-Torus One

토러스 구조와 하이퍼-토러스 구조 상호간 임베딩 정도의 분석

  • Kim, Jong-Seok (Department of Computer Science, University of Rochester) ;
  • Lee, Hyeong-Ok (Department of Computer Education, Sunchon National University)
  • Received : 2014.03.20
  • Accepted : 2014.04.21
  • Published : 2014.05.31

Abstract

Mesh structure is one of typical interconnection networks, and it is used in the part of VLSI circuit design. Torus and Hyper-Torus are advanced interconnection networks in the part of diameter and fault-tolerance of mesh structure. In this paper, we will analyze embedding between Torus and Hyper-Torus networks. We will show T(4k,2l) can be embedded into QT(m,n) with dilation 5, congestion 4, expansion 1. And QT(m,n) can be embedded into T(4k,2l) with dilation 3, congestion 3, expansion 1.

메쉬 구조는 대표적인 상호연결망 중 하나로, VLSI 회로 설계 같은 분야에서 많이 이용되고 있다. 이러한 메쉬 구조에서 지름과 고장허용도를 개선한 연결망으로 토러스와 하이퍼-토러스 연결망이 있다. 본 논문에서는 토러스 구조 T(4k,2l)와 하이퍼-토러스 네트워크 QT(m,n) 사이의 임베딩을 분석한다. 토러스 T(4k,2l)는 QT(m,n)에 연장율 5, 밀집율 4, 확장율 1에 임베딩 가능하고, QT(m,n)은 T(4k,2l)에 연장율 3, 밀집율 3, 확장율 1에 임베딩 가능함을 보인다.

Keywords

References

  1. J. Bruck, R. Cypher and C.-R. Ho, "Wildcard Dimensions, Coding Theory and Fault-Tolerant Meshes and Hypercubes," IEEE Trans. on Computers, vol. 44, no. 1, pp. 150-155, 1995. https://doi.org/10.1109/12.367998
  2. W.S. Ki, H.O. Lee, and J.C. Oh, "The new torus network design based on 3-dimentional hypercube," in Proceedings of the 11th international conference on Advanced Communication Technology, pp. 615-620, 2009.
  3. J.-S. Kim, S. W. Kim, K. Qiu, and H.-O. Lee, "Some Properties and Algorithms for the Hyper-torus Network," Journal of Supercomputing, to appear.
  4. S. Bettayeb, B. Cong, M. Girou, and I.H. Sudborough, "Embedding star networks into hypercubes," IEEE Trans. Computers, Vol. 1, no. 2 pp. 186-194, 1996.
  5. W. Deng and Q. Luo, "Embedding complete binary trees into locally twisted cubes," Advanced Engineering Forum, vol. 6-7, pp. 70-75, 2012. https://doi.org/10.4028/www.scientific.net/AEF.6-7.70
  6. Q. Dong, J. Zhou, Y. Fu, and X. Yang, "Embedding a mesh of trees in the crossed cube," Information Processing Letters, vol. 112, no. 14-15, pp. 599-603, 2012. https://doi.org/10.1016/j.ipl.2012.04.013
  7. S.-Y. Hsieh, C.-N. Kuo, and H.-L. Huang, "1-vertexfault-tolerant cycles embedding on folded hypercubes," Discrete Applied Mathematics, vol. 157, no. 14, pp. 3094-3098, 2009. https://doi.org/10.1016/j.dam.2009.06.012