DOI QR코드

DOI QR Code

유역의 강우-유출 특성을 고려한 NRCS-CN 방법의 선행토양함수조건의 재설정: 선행5일강우량을 기준으로

Re-establishing the Antecedent Moisture Condition of NRCS-CN Method Considering Rainfall-Runoff Characteristics in Watershed Based on Antecedent 5-Day Rainfall

  • 유지영 (전북대학교 공과대학 토목공학과) ;
  • 문건우 (한양대학교 대학원 건설환경공학과) ;
  • 안재현 (서경대학교 이공대학 토목건축공학과) ;
  • 김태웅 (한양대학교 공학대학 건설환경플랜트공학과)
  • 투고 : 2014.02.05
  • 심사 : 2014.05.02
  • 발행 : 2014.06.01

초록

유효강우량을 산정하는 NRCS-CN 방법의 선행토양함수조건을 결정하기 위하여 일반적으로 선행5일강수량이 사용된다. 본 연구에서는 유역의 유출특성을 고려하여 선행5일강수량의 기준값을 재설정하기 위해서 선행5일강수량의 기준값을 변화시키면서 실제 관측 직접유출고와의 오차에 대한 비교 분석을 실시하였다. 그 결과, 전체 18개 대상유역에서 본 연구에서 재설정한 기준값을 적용하여 산정한 직접유출량의 평균오차(RMSE = 27.3 mm)는 일반적으로 적용되는 기준값을 적용하여 산정한 직접유출량의 평균오차(RMSE = 35.2 mm)보다 감소하는 것으로 확인되었다. 또한, 향상 지수를 바탕으로 유역별 선행5일강수량의 기준에 대한 효율성을 평가한 결과, 본 연구에서 재설정한 선행5일강수량의 기준값을 활용하여 직접유출량을 추정하였을 경우, 평균적으로 약 30% 정도의 정확도가 향상되는 것으로 확인되었다. 이와 더불어 본 연구에서는 미계측 유역에 대한 선행5일강수량의 기준값을 재설정하기 위하여 지형지표를 활용한 선형회귀모형을 제안하였다. 회귀모형을 이용하여 재조정된 선행5일강수량의 기준값을 적용할 경우, RMSE가 감소(최소 0.4 mm에서 최대 15.1 mm)함과 동시에 Nash and Sutcliffe의 효율성 계수는 최대 0.33까지 증가하였다.

The mount of antecedent 5-day rainfall (P5) is usually used to determine the antecedent soil moisture condition for estimating effective rainfall using the NRCS-CN method. In order to re-establish the threshold of P5 considering basin characteristics, this study investigated the sensitivity of the threshold of P5 to effective rainfall by comparing the corresponding observed direct runoff. The overall results indicate that the direct runoff estimated using the re-establihed threshold of P5 has smaller mean error (RMSE of 27.3 mm) than those using the conventional threshold (RMSE of 35.2 mm). In addition, after evaluating the effectiveness of threshold of P5 using the improvement index, the threshold re-established in this study improved the ability to estimate the direct runoff by 30% on average. This study also suggested to employ regression models using topographic indices to re-establish the threshold for ungauged basins. When using the re-established threshold from the regression model, the RMSE decreased ranging from 0.4 mm to 15.1 mm and the efficiency index of Nash and Sutcliffe increased up to 0.33.

키워드

참고문헌

  1. Andrews, R. G. (1954). "The use of relative infiltration indices in computing runoff." (unpublished) Soil Conservation. Service, Fort Worth, Texas, p. 6.
  2. Chen, C. L. (1981). "An evaluation of the mathematics and physical significance of the soil conservation service curve number procedure for estimating runoff volume." Rainfall-Runoff Relationship (ed. by V.P. Singh), Water Resources Publications, pp. 387-418.
  3. Hoggan, D. H. (1989). Computer-assisted floodplain hydrology and hydraulics, McGraw-Hill, NY.
  4. Jo, H. J. and Kim, J. S. (1997). "A study on the calculation of effective rainfall by the SCS method using a triangular irregular network." Journal of Korea Water Resources Association, KWRA, Vol. 30, No. 4, pp. 357-366 (in Korean).
  5. Jung, J. H., Jang, S. P., Kim, H. I., Jung, Y. T., Hur, K. S. and Park, H. (1995). "Runoff rate for the estimation of hydrologic soil groups." Journal of the Korean Society of Agricultural Engineers, KSAE, Vol. 36, No. 6, pp. 12-33 (in Korean).
  6. Kim, J. D. (1989). Surface runoff computations from a small watershed using SCS triangular unit hydrograph method, M.S. Thesis, Seoul National University, Korea.
  7. Miliani, F., Ravazzani, G. and Mancini, M. (2011). "Adaptation of precipitation index for the estimation of antecedent moisture condition in large mountainous basins." Journal of Hydrologic Engineering, Vol. 16, No. 3, pp. 218-227. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000307
  8. Miller, N. (1979) Personal communication (unpublished), USDA, Soil Conservation Service, Lanha, Maryland.
  9. Ministry of Land, Transport and Maritime Affairs (MLTM) (2012). Design flood estimation techniques (in Korean).
  10. Mockus, V. (1949). "Estimation of total (and peak rates of) surface runoff for individual storms." Exhibit A in Appendix B, Interim Survey Report Grand (Neosho) River Watershed, USDA.
  11. Mockus, V. (1964). Personnel communication to Orrin Ferris, data March 5, 1964. 5pp., USDA, Soil Conservation Service, Washington D.C.
  12. Nash, J. E. and Sutcliffe, J. V. (1970). "River flow forecasting through conceptual models part I - A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  13. National Institute of Agricultural Science and Technology (NIAST) (2007). National institute of agricultural science and technology research report : Agricultural and Environmental Research (in Korean).
  14. Park, C. H., Yoo, C. S. and Kim, J. H. (2005). "Revised AMC for the application of SCS method : 1. Review of SCS Method and Problems in GIS Application." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 11, pp. 955-962 (in Korean). https://doi.org/10.3741/JKWRA.2005.38.11.955
  15. Ponce, V. M. and Hawkins, R. H. (1996). "Runoff curve number: Has it reached maturity?" Journal of Hydrologic Engineering, ASCE, Vol. 1, No. 1, pp. 11-19. https://doi.org/10.1061/(ASCE)1084-0699(1996)1:1(11)
  16. Rallison, R. E. and Miller, N. (1982). "Past, resent, and further SCS runoff procedure." Proc., International Symposium on Rainfall-Runoff Modeling, Water Resource. Published Littleton, Col., pp. 353-364.
  17. Sherman, L. K. (1949). "The unit hydrograph method." In O. E. Meinzer(ed.), Physics of Earth, Dover Publications Inc., New York, N.Y. pp. 514-525.
  18. Sobhani, G. (1975). A review of selected small watershed design methods for possible adoption to Iranian conditions. M.S. Thesis, Utah State University, Logan, UT.
  19. Soil Conservation Service (SCS) (1971). National engineering handbook, Section 4, Hydrology. US 444 Department of Agriculture, US Government Printing Office, Washington, DC.
  20. Soil Conservation Service (SCS) (1972). National engineering handbook, Section 4, Hydrology. US 444 Department of Agriculture, US Government Printing Office, Washington, DC.
  21. Soil Conservation Service (SCS) (1985). National engineering handbook, Section 4, Hydrology. US 444 Department of Agriculture, US Government Printing Office, Washington, DC.
  22. Sonu, J. H., Yoon, Y. N., Shim, S. B. and Lee, S. T. (1977). "Determination of effective rainfall by US SCS method and regression analysis." Journal of Korea Water Resources Association, KWRA, Vol. 10, No. 2, pp. 101-111 (in Korean).
  23. Yoo, C. S., Park, C. H. and Kim, J. H. (2005). "Revised AMC for the application of SCS method : 2. Revised AMC." Journal of Korea Water Resources Association, KWRA, Vol. 38, No. 11, pp. 963-972 (in Korean). https://doi.org/10.3741/JKWRA.2005.38.11.963
  24. Yoon, T. H. (1991). "Validity of runoff curve number method for estimating of effective rainfall." Journal of Korea Water Resources Association, KWRA, Vol. 24, No. 2, pp. 97-108 (in Korean).
  25. Yoon, Y. N. and Shim, S. B. (1976). "A determination of design flood for small basin by unit hydrograph method." Journal of Korea Water Resources Association, KWRA, Vol. 9, No. 2, pp. 76-86 (in Korean).