DOI QR코드

DOI QR Code

Large Eddy Simulation of Rectangular Open-Channel Flow using OpenFOAM

OpenFOAM을 이용한 직사각형 개수로 흐름의 LES

  • 반채웅 (연세대학교 대학원 토목환경공학과) ;
  • 최성욱 (연세대학교 공과대학 토목환경공학과)
  • Received : 2014.01.09
  • Accepted : 2014.03.13
  • Published : 2014.06.01

Abstract

This study presents numerical simulation of turbulent flows in a rectangular open-channel that has a width-to-depth ratio of 2 using the source code provided by OpenFOAM. Large eddy simulations are carried out by solving the filtered continuity and momentum equations numerically. For the non-isotropic residual stress term, Smagorinsky's (1963) model is used. The flow in the open-channel whose width-to-depth ratio is 2, from experiment of Tominaga et al. (1989), is simulated numerically. Simulation results are compared with measured data by Tominga et al. (1989) and Nezu and Rodi (1985) and with LES data by Shi et al. (1999). Comparisons revealed that the model simulates the mean flow and turbulence statistics well. Specifically, the model reproduced the inner secondary currents located at the corner of sidewall and free surface successfully. In addition, the vortical component of turbulence intensity shows bulged contours towards the bottom edge.

본 연구에서는 OpenFOAM에서 제공하는 소스 코드를 이용하여 폭-수심비가 2인 직사각형 개수로 흐름에 대해 수치모의를 수행하였다. 여과된 연속 방정식과 운동량 방정식을 해석하기 위하여 큰 와 수치모의를 이용하였고, 비등방성 잔여 응력항을 산정하기 위하여 Smagorinsky 모형(1963)을 사용하였다. LES 모형을 Tominaga et al. (1989)의 폭-수심비가 2인 실험수로에 적용하고 평균흐름 및 난류량을 비교하였다. 추가로 Nezu and Rodi (1985)의 실험 결과와 Shi et al. (1999)의 LES 모의 결과와 함께 비교를 수행하였다. 비교 결과 평균흐름 및 난류량 모두 기존 실험 및 모의 결과를 잘 재현하는 것으로 확인되었다. 특히 이차흐름 분포도에서 측벽과 자유수면의 접합부에서 발생하는 내부이차흐름이 발생하는 것을 확인하였다. 또한 수심방향 난류강도의 경우 측벽과 바닥벽에서 난류강도의 등치선도가 측벽과 바닥벽의 접합부 방향으로 편향되는 현상을 확인하였다.

Keywords

References

  1. Cater, J. E. and Williams, J. J. R. (2008). "Large eddy simulation of a long asymmetric compound channel." Journal of Hydraulic Research, Vol. 46, No. 4, pp. 445-453. https://doi.org/10.3826/jhr.2008.3134
  2. Cui, J. and Neary, V. S. (2008). "LES study of turbulent flows with submerged vegetation." Journal of Hydraulic Research, Vol. 46, No. 3, pp. 307-316. https://doi.org/10.3826/jhr.2008.3129
  3. Grega, L. M., Wei, T., Leighton, R. I. and Neves, J. C. (1995). "Turbulent mixed- boundary flow in a corner formed by a solid wall and a free surface." Journal of Fluid Mechanics, Vol. 294, pp. 17-46. https://doi.org/10.1017/S0022112095002795
  4. Harlow, F. H. and Welch, J. E. (1965). "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface." Physics of Fluids, Vol. 8, p. 2182. https://doi.org/10.1063/1.1761178
  5. Hsu, T. Y., Grega, L. M., Leighton, R. I. and Wei, T. (2000). "Turbulent kinetic energy transport in a corner formed by a solid wall and a free surface." Journal of Fluid Mechanics, Vol. 410, pp. 343-366. https://doi.org/10.1017/S0022112099008125
  6. Issa, R. I., Gosman, A. D. and Watkins, A. P. (1986). "The computation of compressible and incompressible recirculating flows." Journal of Computational Physics, Vol. 62, No. 1, pp. 62-82.
  7. Joung, Y. and Choi, S. U. (2010). "Direct numerical simulation of low Reynolds number flows in an open-channel with sidewalls." International Journal for Numerical Methods in Fluids, Vol. 62, No. 8, pp. 854-874.
  8. Kang, H. and Choi, S. U. (2006). "Reynolds stress modelling of rectangular open-channel flow." International Journal for Numerical Methods in Fluids, Vol. 51, No. 11, pp. 1319-1334. https://doi.org/10.1002/fld.1157
  9. Kara, S., Stoeeser T. and Sturm T. W. (2012). "Turbulence statistics in compound channels with deep and shallow overbank flows." Journal of Hydraulic Research, Vol. 50, No. 5, pp. 482-493. https://doi.org/10.1080/00221686.2012.724194
  10. Nezu, I. and Nakagawa, H. (1993). Turbulence in open-channel flows, Monograph, Balkema, Rotterdam, The Netherlands.
  11. Nezu, I. and Rodi, W. (1985). "Experimental study on secondary currents in open channel flow." 21st IAHR Congress, Melbourne, Australia, Vol. 2, pp. 19-23.
  12. Patankar, S. V. and Spalding, D. B. (1972). "A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows." International Journal of Heat and Mass Transfer, Vol. 15, No. 10, pp. 1787-1806. https://doi.org/10.1016/0017-9310(72)90054-3
  13. Shi, J., Thomas, T. G. and Williams, J. J. R. (1999). "Large-eddy simulation of flow in a rectangular open channel." Journal of Hydraulic Research, Vol. 37, No. 3, pp. 345-361. https://doi.org/10.1080/00221686.1999.9628252
  14. Smagorinsky, J. (1963). "General circulation experiments with the primitive equations: I. the basic experiment." Monthly Weather Review, Vol. 91, No. 3, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  15. Tominaga, A., Nezu, I., Ezaki, K. and Nakagawa, H. (1989). "Three-dimensional turbulent structure in straight open channel flows." Journal of Hydraulic Research, Vol. 27, No. 1, pp. 149-173. https://doi.org/10.1080/00221688909499249
  16. Van Driest, E. R. (1956). "On the turbulent flow near a wall." Journal of Aeronautical Science, Vol. 23, pp. 1007-1011. https://doi.org/10.2514/8.3713
  17. Xie, Z., Lin, B. and Falconer, R. A. (2012). "Large-eddy simulation of the turbulent structure in compound opne-channel flows." Advances in Water Resources, Vol. 53, pp. 66-75.
  18. Yang, W. and Choi, S. U. (2002). "Three-dimensional numerical simulation of local scour around the bridge pier using large eddy simulation." Journal of the Korean Society of Civil Engineers, Vol. 22, No. 4-B, pp. 437-446 (in Korean).