DOI QR코드

DOI QR Code

Analysis of Land Surface Temperature from MODIS and Landsat Satellites using by AWS Temperature in Capital Area

수도권 AWS 기온을 이용한 MODIS, Landsat 위성의 지표면 온도 분석

  • Jee, Joon-Bum (Weather Information Service Engine, Center for Atmospheric and Earthquake Research) ;
  • Lee, Kyu-Tae (Dept. of Atmospheric and Environmental Sciences, Gangneung-Wonju National University) ;
  • Choi, Young-Jean (Weather Information Service Engine, Center for Atmospheric and Earthquake Research)
  • 지준범 ((재)기상기술개발원 차세대도시농림융합기상사업단) ;
  • 이규태 (강릉원주대학교 대기환경과학과) ;
  • 최영진 ((재)기상기술개발원 차세대도시농림융합기상사업단)
  • Received : 2014.03.03
  • Accepted : 2014.04.28
  • Published : 2014.04.30

Abstract

In order to analyze the Land Surface Temperature (LST) in metropolitan area including Seoul, Landsat and MODIS land surface temperature, Automatic Weather Station (AWS) temperature, digital elevation model and landuse are used. Analysis method among the Landsat and MODIS LST and AWS temperature is basic statistics using by correlation coefficient, root-mean-square error and linear regression etc. Statistics of Landsat and MODIS LST are a correlation coefficient of 0.32 and Root Mean Squared Error (RMSE) of 4.61 K, respectively. And statistics of Landsat and MODIS LST and AWS temperature have the correlations of 0.83 and 0.96 and the RMSE of 3.28 K and 2.25 K, respectively. Landsat and MODIS LST have relatively high correlation with AWS temperature, and the slope of the linear regression function have 0.45 (Landsat) and 1.02 (MODIS), respectively. Especially, Landsat 5 has lower correlation about 0.5 or less in entire station, but Landsat 8 have a higher correlation of 0.5 or more despite of lower match point than other satellites. Landsat 7 have highly correlation of more than 0.8 in the center of Seoul. Correlation between satellite LSTs and AWS temperature with landuse (urban and rural) have 0.8 or higher. Landsat LST have correlation of 0.84 and RMSE of more than 3.1 K, while MODIS LST have correlation of more than 0.96 and RMSE of 2.6 K. Consequently, the difference between the LSTs by two satellites have due to the difference in the optical observation and detection the radiation generated by the difference in the area resolution.

서울을 포함한 수도권의 지표면 온도를 분석하기 위하여 Landsat과 MODIS의 지표면 온도, AWS의 기온, 지표면 고도 및 토지이용도를 이용하였다. Landsat과 MODIS 위성의 지표면 온도와 AWS 기온의 분석은 상관계수, 평방근 오차(Root Mean Squared Error, RMSE), 선형회귀분석 등의 통계분석방법을 적용하였다. Landsat과 MODIS 지표면 온도의 상관계수는 0.32이고 RMSE는 4.61 K였다. 그리고 Landsat과 MODIS 지표면 온도와 AWS 기온의 상관성은 각각 0.83과 0.96이며 RMSE는 3.28 K, 2.25 K이었다. Landsat과 MODIS 지표면 온도는 비교적 높은 상관성을 보였으나 각각의 선형회귀의 기울기는 0.45와 1.02이었다. Landsat 5의 경우 전체 관측소에 대하여 0.5이하의 낮은 상관성을 보였고 Landsat 8의 경우는 일치되는 지점이 다른 위성에 비하여 적었으나 0.5이상의 상관성을 나타냈다. Landsat 7은 대부분 0.8이상의 높은 상관성을 보였고 대체적으로 서울중심부에서 높은 상관성이 나타났다. 위성의 지표면 온도와 지표유형에 따른 AWS 기온사이의 상관성은 0.8이상의 높은 상관성을 보였다. Landsat 위성의 지표면 온도의 상관성은 0.84이었고 RMSE는 3.1 K이상이었으며 MODIS 위성의 상관계수는 0.96이상이고 RMSE는 2.6 K이하였다. 결과적으로 두 위성의 지표온도의 차이는 관측시각 차이에 의한 것으로 위성의 해상도에 따라 복사량을 탐지하는 지표면의 면적 차이에 의하여 발생되는 것으로 사료된다.

Keywords

References

  1. National Geological Information Institute: www.ngi.go.kr
  2. NASA LAADS(Level 1 and Atmosphere Archive and distribution system): ladsweb.nascom.nasa.gov
  3. Landsat EarthExplorer : earthexploerer.usgs.org
  4. Boo, K.O., Y.S. Chun, J.Y. Park, H.M. Cho, and W.T. Kwon, 1999. The Horizontal Distribution of Air Temperature in Seoul using Automatic Weather Station data, Journal of the Korean Meteorological Society, 35(3): 335-343 (in Korean with English abstract).
  5. Chander, G., B.L. Markham, and D.L. Helder, 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors, Remote Sensing of Environment, 113(5): 893-903. https://doi.org/10.1016/j.rse.2009.01.007
  6. Choi, S.P. and I.T. Yang, 1998. Extraction of Land Surface Change Information by Using Landsat TM Images, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 21(3): 261-267 (in Korean with English abstract).
  7. Jeong, J.C., 2009. Comparison of Land Surface Temperatures Derived from Surface Emissivity with Urban Heat Island Effect, Journal of Environmental Impact Assessment, 18(4): 219-277 (in Korean with English abstract).
  8. Jin, M. and S. Liang, 2006. An Improved Land Surface Emissivity Parameter for Land Surface Models Using Global Remote Sensing Observations, Journal of Climate, 19(12): 2867-2881. https://doi.org/10.1175/JCLI3720.1
  9. Jo, M.H., K.J. Lee, and W.S. Kim, 2001. A Study on the Spatial Distribution Characteristic of Urban Surface Temperature using Remotely Sensed Data and GIS, Journal of the Korean Association of Geographic Information Studies, 4(1): 57-66 (in Korean with English abstract).
  10. Karnieli, A., 2010. Use of NDVI and Land surface Temperature for Drought Assessment, Jourrnal of Climate, 23(3): 618-633. https://doi.org/10.1175/2009JCLI2900.1
  11. Kim, H.O. and J.M. Yeom, 2012. Effect of the Urban Land Cover Types on the Surface Temperature: Case Study of Ilsan New City, Korean Journal of Remote Sensing, 28(2): 203-214 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2012.28.2.203
  12. Kim, J.I. and J.H. Kwon, 2005. Identifying Urban Spatial Structure through GIS and Remote Sensing Data: The Case of Daegu Metropolitan Area, The Korean Association of Geographic Information Studies, 12(4): 44-51 (in Korean with English abstract).
  13. Kim, T.G., K.E. Kim, K.S. Jo, and K.H. Kim, 1996. Monitoring of Lake Water Quality Using LANDSAT TM Imagery Data, Journal of The Korean Society for Geo-Spatial Information System, 4(2): 23-33 (in Korean with English abstract).
  14. Landsberg, H.E, 1981. The Urban Climate, New York, Academic press. 275pp.
  15. Lee, C.S., K.S. Han, J.M. Yeom, B.G. Song, and Y.S. Kim, 2007. Thermal Spatial Representativity of Meteorological Stations using MODIS Land Surface Temperature, Journal of the Korean Association of Geographic Information Studies, 10(3): 123-133 (in Korean with English abstract).
  16. Lee, J.Y., D.Y. Yang, J.Y. Kim, and G.S. Chung, 2004. Application of Landsat ETM Image to Estimate the Distribution of Soil Types and Erosional Pattern in the Wildfire Area of Gangneung, Gangweon Province, Korea, Journal Korean Earth Science Society, 25(8): 764-773 (in Korean with English abstract).
  17. Lee, K.K. and W.H. Hong, 2008. A Study on the Urban Heat Environment Pattern Analysis and Alleviation Plan, Journal of Architectural Institute of Korea, 24(9): 253-260 (in Korean with English abstract).
  18. Lee, S.H., J.S. Ahn, H.D. Kim, and S.J. Hwang, 2009. Comparison Study on the Estimation Algorithm of Land Surface Temperature for MODIS Data at the Korean Peninsula, Journal of the Environmental Sciences, 18(4): 355-367 (in Korean with English abstract). https://doi.org/10.5322/JES.2009.18.4.355
  19. Liu, L. and Y. Zhang, 2011. Urban Heat Island Analysis Using the Landsat TM Data and ASTER Data: A Case Study in Hong Kong, Remote Sensing, 3(7): 1535-1552. https://doi.org/10.3390/rs3071535
  20. Mallick, J., Y. Kant, and B.D. Bharath, 2008. Estimation of land surface temperature over Delhi using Landsat-7 ETM+, Journal Indian Geophysical Union, 12(3): 131-140.
  21. Mishra, N., D.L. Helder, A. Angal, J. Choi, and X. Xiong, 2014. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site, Remote Sens, 6(2): 1327-1346. https://doi.org/10.3390/rs6021327
  22. Nasa Landsat Project Science Office, 2004. Landsat 7 Science Data Users Handbook, 184, http://landsathandbook.gsfc.nasa.gov/pdfs/Landsat7_Handbook.pdf.
  23. Na, S.I., J.H. Park, and H.S. Shin, 2008. Change Detection of NDVI, Surface Temperature and VTCI in Saemangeum Area using Satellite Imagery, Korean National Committee on Irrigation and Drainage Journal, 15(1): 28-38.
  24. Nikolopoulou, M. and S. Lykoudis, 2007. Use of Outdoor Spaces and Microclimate in a Mediterranean Urban Area, Building and Environment, 42(10): 3691-3707. https://doi.org/10.1016/j.buildenv.2006.09.008
  25. Nikolopoulou, M. and S. Lykoudis, 2006. Thermal comfort in outdoor urban spaces: analysis across different European countries, Building and Environment, 41(11): 1455-1470. https://doi.org/10.1016/j.buildenv.2005.05.031
  26. Park, M.H., 2001. A Study on the Urban Heat Island Phenomenon Using LANDSAT TM Thermal Infrared Data-In the Case of Seoul-, Korean Society Civil Engineering, 21(6-D): 861-874 (in Korean with English abstract).
  27. Prihodko, L. and S.N. Goward, 1997. Estimation of air temperature from remotely sensed surface observations, Remote Sensing of Environment, 60(3): 335-346. https://doi.org/10.1016/S0034-4257(96)00216-7
  28. Steve, K.J., N.H. Wong, H. Emlyn, A. Roni, and Y. Hong, 2007. The influence of land use on the urban heat island in Singapore, Habitat International, 31(1): 232-242. https://doi.org/10.1016/j.habitatint.2007.02.006
  29. Suga, Y., H. Ogawa, K. Ohno and K. Yamada, 2003. Detection of Surface Temperature from Landsat-7/ETM+, Advances in Space Research, 32(11): 2235-2240. https://doi.org/10.1016/S0273-1177(03)90548-5
  30. Teillet, P.M., J.L. Barker, B.L. Markham, R.R. Irish, G. Fedosejevs, and J.C. Storey, 2001. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets, Remote Sensing of Environment, 78(1-2): 39-54. https://doi.org/10.1016/S0034-4257(01)00248-6
  31. Walawender, J.P., M. Szymanowski, M.J. Hajito, and A. Bokwa, 2013. Land Surface Temperature Patterns in the Urban Agglomeration of Krakow (Poland) Derived from Landsat-7/ETM+ Data, Pure and Applied Geophysics, doi:10.1007/s00024-013-0685-7.
  32. Wan, Z.M., 2008. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products, Remote Sensing of Environment, 112(1): 59-74. https://doi.org/10.1016/j.rse.2006.06.026
  33. Wan, Z. and Z.L. Li, 2008. Radiance-based validation of the V5 MODIS land-surface temperature product, International Journal of Remote Sensing, 29 (17-18): 5373-5395. https://doi.org/10.1080/01431160802036565
  34. World Meteorological Organization (WMO), 2007. RGB Composite Satellite Imagery Workshop, Final Report. Boulder, Co, 5-7.
  35. Yoo, B.M., 1999. Introduction to Geospatial Information, DongMyung, 511pp (in Korean).
  36. Yoon, M.H. and D.M. Ahn, 2009. An Application of Satellite Image Analysis to Visualize the Effects of Urban Green Areas on Temperature, Journal of the Korean Institute of Landscape Architecture, 37(3): 46-53(in Korean with English abstract).

Cited by

  1. Application of Landsat images to Snow Cover Changes by Volcanic Activities at Mt. Villarrica and Mt. Llaima, Chile vol.30, pp.3, 2014, https://doi.org/10.7780/kjrs.2014.30.3.1
  2. Comparison of Surface Temperatures between Thermal Infrared Image and Landsat 8 Satellite vol.32, pp.1, 2016, https://doi.org/10.5572/KOSAE.2016.32.1.046
  3. Retrieval of Land SurfaceTemperature based on High Resolution Landsat 8 Satellite Data vol.32, pp.2, 2016, https://doi.org/10.7780/kjrs.2016.32.2.9
  4. Landsat-8을 활용한 대구시 열 환경구조 분석 vol.32, pp.4, 2014, https://doi.org/10.7848/ksgpc.2014.32.4-1.327
  5. Downscaling of MODIS Land Surface Temperature to LANDSAT Scale Using Multi-layer Perceptron vol.35, pp.4, 2014, https://doi.org/10.7848/ksgpc.2017.35.4.313
  6. MODIS 영상 자료와 패널 자료를 이용한 지표면온도변화 요인분석 vol.21, pp.1, 2014, https://doi.org/10.11108/kagis.2018.21.1.046
  7. Landsat 8 위성자료를 이용한 도심녹지 냉각효과 분석 vol.34, pp.2, 2014, https://doi.org/10.7780/kjrs.2018.34.2.1.1
  8. Terra/Aqua MODIS LST와 기온과의 상관성 분석: 한파 및 폭염 발생 기간을 중심으로 vol.22, pp.4, 2019, https://doi.org/10.11108/kagis.2019.22.4.197
  9. MODIS 기반의 열 분포도를 활용한 열 집중지역과 폭염 심화요인 간의 공간관계 특성 연구 vol.36, pp.5, 2014, https://doi.org/10.7780/kjrs.2020.36.5.4.2