DOI QR코드

DOI QR Code

Predicting the extent of the volcanic ash dispersion using GOCI image and HYSPLIT model - A case study of the 17 Sep, 2013 eruption in SAKURAJIMA volcano -

GOCI 위성영상과 HYSPLIT 모델을 이용한 화산재 확산경로 예측 - 2013년 9월 17일 분화된 사쿠라지마 화산을 중심으로 -

  • Lee, Seul-Ki (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Ryu, Geun-Hyeok (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Hwang, Eui-Hong (National Institute of Meteorological Research, Korea Meteorological Administration) ;
  • Choi, Jong-Kuk (Korea Ocean Satellite Center, Korea Institute of Ocean Science & Technology) ;
  • Lee, Chang-Wook (National Institute of Meteorological Research, Korea Meteorological Administration)
  • 이슬기 (기상청 국립기상연구소) ;
  • 류근혁 (기상청 국립기상연구소) ;
  • 황의홍 (기상청 국립기상연구소) ;
  • 최종국 (한국해양과학기술원 해양위성센터) ;
  • 이창욱 (기상청 국립기상연구소)
  • Received : 2014.04.02
  • Accepted : 2014.04.20
  • Published : 2014.04.30

Abstract

Mt. SAKRAJIMA in southern Kagosima, japan is one of the most active volcanoes in the world. On 18 August 2013, the SAKRAJIMA volcano recently went into the largest scaled eruption with a huge plume of volcanic ash. Therefore, the concern arises if this considerable amount of ashes might flow into the Korea peninsula as well as Japan. In this paper, we performed numeric experiment to analyze how volcanic product resulted from the SAKRAJIMA volcano has impacted on Korea. In order to predict the spread pathway of ash, HYSPLIT model and UM data has been used and 17th September 2013 has been selected as observation date since it is expected that the volcanic ash would flow into the South Korea. In addition, we have detected ash dispersion by using optical Communication, Ocean and Meteorological Satellite- Geostationary Ocean Color Imager (COMS-GOCI) images. As the results, we come to a very satisfactory conclusion that the spread pathway of volcanoes based on HYSPLIT model are matched 63.52 % with ash dispersion area detected from GOCI satellites image.

일본 가고시마에 위치하고 있는 사쿠라지마 화산은 세계에서 가장 활발하게 활동하고 있는 화산 중 하나이다. 2013년 8월 18일 사쿠라지마 화산은 최근 들어 가장 큰 규모의 분화를 하였고, 분화에 의해 발생한 화산재는 일본뿐만 아니라 국내 유입에 대한 우려를 야기하였다. 본 연구에서는 사쿠라지마 화산분출물이 한반도에 미치는 영향을 분석하기 위하여 수치실험을 수행하였다. 화산재 확산 경로를 예측하기 위하여 HYSPLIT 확산모델과 UM 기상자료를 이용하였으며, 연구대상일은 화산재 유입이 예상되는 규모로 분화한 2013년 9월 17일이다. 또한 천리안 위성영상을 이용하여 화산재를 탐지하였고, 모의실험 결과와 비교를 통해 검증을 수행하였다. 그 결과, HYSPLIT 모델기반의 화산재 확산 예측 경로와 GOCI 위성 영상에서 탐지한 화산재 분포지역과 63.52%가 일치하는 것을 보였다.

Keywords

References

  1. Corradini, S., C. Spinetti, E. Carboni, C. Tirelli, M.F. Buongiorno, S. Pugnaghi, and Gangale, G., 2008. Mt.Etna tropospheric ash retrieval and sensitivity analysis using moderate resolution imaging spectroradiometer measurements, Journal of application Remote Sensing, 2(1): 023500.
  2. D'Amours, R., 1998. Modeling the ETEX plume dispersion with the Canadian Emergency Response Model, Atmospheric Environment, 32(24): 4335-4341. https://doi.org/10.1016/S1352-2310(98)00182-4
  3. Draxler, R.R., and G.D. Hess, 1998. Description of the Hysplit-4 modeling system, NOAA Technical Memorandum ERL ARL-224.
  4. Heffter, J.L., and B.J.B. Stunder, 1993. Volcanic ash forecast transport and dispersion (VAFTAD) model, Weather and forecasting, 8: 533-541. https://doi.org/10.1175/1520-0434(1993)008<0533:VAFTAD>2.0.CO;2
  5. Jones, A., D. Thomson, M. Hort, and B. Devenish, 2007. The U.K. Met office's next-generation atmospheric dispersion model, NAME III, Air Pollution Modeling and Its Application XVII. Springer, 580-589.
  6. Krotkov N.A., O. Torres, C. Seftor, A.J. Krueger, A. Kortinski, W.I. Rose, G.J.S. Bluth, D. Schneider, and S.J. Schaefer, 1999. Comparison of TOMS and AVHRR vocanic ash retrievals from the August 1992 eruption of Mt.Spurr, Geophysical research letters, 26(4): 455-458. https://doi.org/10.1029/1998GL900278
  7. Lee S.H., and S.H. Yun, 2011. Impact of Meteorological Wind Fields Average on Predicting Volcanic Tephra Dispersion of Mt. Baekdu, Journal of Korean Earth Science Society, 32(4): 360-372 (in Korean with English abstract). https://doi.org/10.5467/JKESS.2011.32.4.360
  8. Mastin, L.G., M. Guffanti, R. Servranckx, P. Webley, S. Barsotti, K. Dean, A. Durant, J.W. Ewert, A. Neri, W.I. Rose, D. Schneider, L. Siebert, B. Stunder, G. Swanson, A. Tupper, A. Volentik, and C.F. Waythomas, 2009. A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, Journal of Volcanology and Geothermal Research, 186: 10-21. https://doi.org/10.1016/j.jvolgeores.2009.01.008
  9. Miller, T.P., and T.J. Casadevall, 2000. Volcanic Ash Hazards to Aviation in Encyclopedia of Volcanoes, Academic Press, 915-930.
  10. Pavolonis, M.J., W.F. Feltz, A.K. Heidinger, and G.M. Gallina, 2006. A daytime complement to the reverse absorption technique for improved automated detection of volcanic ash, Journal of atmospheric and oceanic technology, 23(11): 1422-1444. https://doi.org/10.1175/JTECH1926.1
  11. Picchiani, M., M. Chini, S. Corradini, L. Merucci, P. Sellitto, F. Del Frate, and S. Stramondo, 2011. Volcanic ash detection and retrievals using MODIS data by means of neural networks, Atmospheric measurement techniques, 4: 2619-2631. https://doi.org/10.5194/amt-4-2619-2011
  12. Prata, A.J., 1989. Observations of volcanic ash clouds in the 10-12um window using AVHRR/2 data, International journal of Remote sensing, 10: 751-761. https://doi.org/10.1080/01431168908903916
  13. Prata, A.J., 1989. Infrared radiative transfer calculations for volcanic ash clouds, Geophysical research letters, 14(11): 1293-1296.
  14. Robert, W., F. Luke, G. Harold, H. Andrew, and P. Eric, 2002. Automated volcanic eruption detection using MODIS, Remote sensing of environment, 82: 135-155. https://doi.org/10.1016/S0034-4257(02)00030-5
  15. Sakurajima volcano eruptions report: volcano discovery, available at http://volcanodiscovery.com
  16. Volcano ash advisory center: available at http://ds.data.jma.go.jp/svd/vaac/data/
  17. Yu, T., W.L. Rose, and A.J. Prata, 2002. Atmospheric correction for satellite-based volcanic ash mapping and retrievals using "split window" IR data from GOES and AVHRR, Journal of Geophysical Research, 106(D16): 1-19.
  18. Watson, I.M., V.J. Realmuto, W.I. Rose, A.J. Prata, G.J.S. Bluth, Y. Gu, C.E. Bader, and T. Yu, 2004. Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer, Journal of volcanology and geothermal research, 135: 75-89. https://doi.org/10.1016/j.jvolgeores.2003.12.017
  19. Witham, C.S., M.C. Hort, R. Potts, R. Servranckx, P. Husson, and F. Bonnardot, 2007. Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvotn eruption, Meteorological Application, 14: 27-38. https://doi.org/10.1002/met.3

Cited by

  1. 일본 온타케 화산분화에 따른 화산재 확산 피해범위 예측 vol.30, pp.6, 2014, https://doi.org/10.7780/kjrs.2014.30.6.8
  2. 천리안 위성영상(MI)과 Landsat-8 위성영상(OLI, TIRS)을 이용한 화산재 정보 산출: 사쿠라지마 화산의 사례연구 vol.33, pp.5, 2014, https://doi.org/10.7780/kjrs.2017.33.5.1.11