DOI QR코드

DOI QR Code

Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang

된장으로부터 분리된 Bacillus subtilis CBD2의 생육특성 및 amylase 활성

  • Yang, Su-Jin (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Lee, Dae-Hoon (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Park, Hye-Mi (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Jung, Hee Kyoung (Biohealth Convergence Center, Daegu Technopark) ;
  • Park, Chang-Su (Department of Food Science and Technology, Catholic University of Daegu) ;
  • Hong, Joo-Heon (Department of Food Science and Technology, Catholic University of Daegu)
  • 양수진 (대구가톨릭대학교 식품공학전공) ;
  • 이대훈 (대구가톨릭대학교 식품공학전공) ;
  • 박혜미 (대구가톨릭대학교 식품공학전공) ;
  • 정희경 ((재)대구테크노파크 바이오헬스융합센터) ;
  • 박창수 (대구가톨릭대학교 식품공학전공) ;
  • 홍주헌 (대구가톨릭대학교 식품공학전공)
  • Received : 2014.02.06
  • Accepted : 2014.04.03
  • Published : 2014.04.30

Abstract

In this study, one GRAS strain was screened from doenjang, a traditional Korean fermented food, as a microorganism producing amylase due to the formation of a clear zone on the medium including soluble starch. From the analysis of the gene sequence of 16S ribosomal RNA, the strain was identified as Bacillus subtilis and was therefore named Bacillus subtilis CBD2. When the nutrient broth medium was prepared with 3% NaCl, 5% glucose, and the initial medium pH 7.0, the B. subtilis CBD2 showed maximum growth. Among soluble starch, corn starch, maize amylopectin, and wheat starch, soluble starch was the most effective carbon source in the production of amylase by B. subtilis CBD2. The amylase from B. subtilis CBD2 showed the highest activities at pH 8.0 and $50^{\circ}C$, and corn starch was the most proper substrate for the enzyme activity. When corn starch was used as a substrate, the production of sugars through enzyme activity increased for 24 h, and then the enzyme activity became constant.

본 연구에서는 식품산업에 적용 가능한 amylase의 발굴을 위하여 된장으로부터 amylase를 생산하는 균주를 분리하였고, 분리된 미생물들의 동정을 통하여 GRAS 미생물로 부터 생산되는 amylase에 대한 효소 특성을 규명하였다. 그 결과 균주 유래 16S ribosomal RNA 유전자 염기서열에서 B. subtilis로 동정되어 본 균주를B. subtilis CBD2로 명명하였다. B. subtilis CBD2 균주의 생육에 미치는 배지 성분에 대한 특성을 검토한 결과 본 균주는 pH 7.0, NaCl 3%, glucose 10%에서 가장 높은 균 생육 특성을 나타내었다. 그리고 본 균주의 amylase 생산에 미치는 탄소원의 영향을 검토한 결과, 본 균주는 soluble starch, corn starch, maize amylopectin 및 wheat starch 중에서 soluble starch를 탄소원으로 사용하였을 때 가장 높은 amylase 생산성을 나타내었다. B. subtilis CBD2유래 amylase의 활성에 미치는 반응조건을 검토한 결과 본 균주 유래 amylase는 pH 8.0 그리고 $50^{\circ}C$에서 가장 높은 효소 활성을 나타내었으며 기질특이성에 대한 검토에서는 corn starch>wheat starch>soluble starch>maize amylopectin 순으로 효소 활성을 나타내었다. B. subtilis CBD2가 생성하는 amylase 효소와 corn starch 기질 반응에 대한 전분 분해능 및 당 생성율 변화에서는 24시간에서 가장 높은 전분 분해능 및 당 생성율을 나타내어 corn starch를 이용한 효소 반응은 24시간이 가장 적절함을 확인할 수 있었다. 따라서 본 연구에서 분리된 균주는 GRAS 미생물인B. subtilis이었으며 본 균주 유래의 amylase 특성을 활용한다면 향 후 식품산업에 있어서 전분 분해 관련 분야에 유용하게 이용될 것으로 기대되어진다.

Keywords

References

  1. Dixon B (1998) Power unseen : How microbes rule the world. Oxford University Press, USA, P357-359
  2. Kim CH, Lee SH (2011) Isolation of Bacillus subtilis CK-2 hydrolysing various organic materials. J Life Sci, 21, 1716-1720 https://doi.org/10.5352/JLS.2011.21.12.1716
  3. Casula G, Cutting SM (2002) Bacillus probiotics: spore germination in the gastrointestinal tract. Appl Environ Microbiol, 68, 2344-2352 https://doi.org/10.1128/AEM.68.5.2344-2352.2002
  4. Conway PL, Gorbach SL, Goldin BR (1987) Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J Dairy Sci, 70, 1-12 https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  5. Isolauri E, Salminen S, Ouwehand AC (2004) Probiotics. Best Prac Res Cl Em, 18, 299-313 https://doi.org/10.1016/j.bpg.2003.10.006
  6. Green DH, Wakeley PR, Page A, Barnes A, Baccigalupi L, Ricca E, Cutting SM (1999) Characterization of two Bacillus probiotics. Appl Environ Microbiol, 65, 4288-4291
  7. Cutting SM (2011) Bacillus probiotics. Food Microbiol, 28, 214-220 https://doi.org/10.1016/j.fm.2010.03.007
  8. Qin HB, Yang HJ, Qiao Z, Gao S, Liu Z (2012) Identification and characterization of a Bacillus subtilis strain HB-1 isolated from Yandou, a fermented soybean food in China. J Food Control, 31, 22-27
  9. Asgher M, Javaid Asad M, Rahman SU, Legge RL (2007) A thermostable a-amylase from a moderately thermophilic Bacillus subtilis strain for starch processing. J Food Eng, 79, 950-955 https://doi.org/10.1016/j.jfoodeng.2005.12.053
  10. Chang CT, Wang PM, Hung YF, Chung YC (2012) Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chem, 133, 1611-1617 https://doi.org/10.1016/j.foodchem.2012.02.061
  11. Jetendra KR, Sudhir KR, Ashis KM (2012) Characterization and application of a detergent-stable alkaline $\alpha$-amylase from Bacillus subtilis strain AS-S01a. Int J Biol Macromol, 50, 219-229 https://doi.org/10.1016/j.ijbiomac.2011.10.026
  12. Jetendra KR, Ashis KM (2013) Applications of a high maltose forming, thermo-stable $\alpha$-amylase from an extremely alkalophilic Bacillus licheniformis strain AS08E in food and laundry detergent industries. Biochem Eng J, 77, 220-230 https://doi.org/10.1016/j.bej.2013.06.012
  13. Jack RW, Tagg JR, Ray B (1995) Bacteriocins of gram-positive bacteria. Microbiol Rev, 59, 171-200
  14. Natasa B, Jordi R, Josep LS, Zoran V (2011) Production and properties of the highly efficient raw starch digesting $\alpha$-amylase from a Bacillus licheniformis ATCC 9945a. Biochem Eng J, 53, 203-209 https://doi.org/10.1016/j.bej.2010.10.014
  15. Konsula Z, Liakopoulou-Kyriakides M (2004) Hydrolysis of starches by the action of an $\alpha$-amylase from Bacillus subtilis. Process Biochem, 39, 1745-1749 https://doi.org/10.1016/j.procbio.2003.07.003
  16. Bae HC, Choi SH, Na SH, Nam MS (2012) Characteristics of a-Amylase and protease produced from Bacillus amyloliquefacies CNL-90 isolated from malt grain. Anim Feed Sci Tech, 54, 133-139 https://doi.org/10.5187/JAST.2012.54.2.133
  17. Ravindar DJ, Elangovan N (2013) Molecular identification of amylase producing Bacillus subtilis and detection of optimal conditions. J Pharm Res, 6, 426-430 https://doi.org/10.1016/j.jopr.2013.04.001
  18. Lee SH, Lee MS (2000) Utilization the Tofu-Residue for production of the bacteriocin I. Cultural conditions of Bacillus sp. for amylase. J Food Hyg Safety, 15, 271-276
  19. Mukherjee AK, Bora M, Rai SK (2009) To study the influence of different components of fermentable substrates on induction of extracellular a-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of a-amylase in laundry detergent formulations. Biochem Eng J, 43, 149-156 https://doi.org/10.1016/j.bej.2008.09.011
  20. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31, 426-428 https://doi.org/10.1021/ac60147a030
  21. Lee MY, Kang TS (1998) Production and properth of maltooligosaccharide by Bacillus cereus IAM 1072 with response surface methodology. J Korean Soc Food Sci Nutr, 27, 639-647
  22. Ryu HS, Shon MY, Cho SJ, Park SK, Lee SW (2007) Characterization of antibacterial substance-producing Bacillus subtilis isolated from traditional Doenjang. J Korean Soc Appl Biol chem, 50, 87-94
  23. Kwon CH, Lee HA, Park JY, Kim JS, Lim JK, Park CS, Kwon DY, Kim YS, Kim JH (2009) Development of a RAPD-PCR method for identification of Bacillus species isolated from Cheonggukjang. Int J Food Microbiol, 129, 282-287 https://doi.org/10.1016/j.ijfoodmicro.2008.12.013
  24. Sorokulova IB, Pinchuk IV, Denayrolles M, Osipova IG, Huang JM, Cutting SM, Urdaci MC (2007) The safety of two Bacillus probiotic strains for human use. Digest Dis Sci, 53, 954-963
  25. Logan NA (2011) Bacillus and relatives in foodborne illness. J Appl Microbiol, 112, 417-429
  26. Choi KK, Bi CB, Ham SS, Lee DS (2003) Isolation, Identification and growth characteristics of main strain related to meju fermentation. J Korean Soc Food Nutr, 32, 818-824 https://doi.org/10.3746/jkfn.2003.32.6.818
  27. Lee SY, Kim JY, Beak SY, Yeo SH, Koo BS, Park HY, Choi HS (2011) Isolation and characterization of oligotrophic strains with high enzyme activity from buckwheat sokseongjang. Korean J Food Sci Technol, 43, 735-741 https://doi.org/10.9721/KJFST.2011.43.6.735
  28. Park JW, Kim BJ, Lee JW, Kim YB (2002) Purification and characterization of a maltopentaose-producing amylase from Bacillus megaterium KSM C-404, J Mircobiol Biotechnol, 30, 352-358
  29. Shon MY, Kwon SH, Sung CK, Lee SW, Park SK (2001) Isolation and microbiologina characteristics of Bacillus megaterium SMY-212 for preparation of black bean Chungkugjang, J Life Sci, 11, 304-310
  30. Park CS, Kang DO, Choi NS (2012) Charaterization of cellulase and xylanase from Bacillus subtilis NC1 isolated from environmental soil and determination of its genes, J Life Sci, 22, 912-919 https://doi.org/10.5352/JLS.2012.22.7.912
  31. Konsoula Z, Kiakopoulou-Kyriakides L (2007) Co-production of a-amylase and $\beta$-galactosidase by Bacillus subtilis in complex organic subsrates. Bioresource Technol, 98, 150-157 https://doi.org/10.1016/j.biortech.2005.11.001

Cited by

  1. Physicochemical properties and microencapsulation process of rice fermented with Bacillus subtilis CBD2 vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.225
  2. Screening of Non-Biogenic-Amine-Producing Bacillus subtilis and Medium Optimization for Improving Biomass by the Response Surface Methodology vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.571
  3. α-Glucosidase inhibitory activity and protease characteristics produced by Bacillus amyloliquefaciens vol.22, pp.5, 2015, https://doi.org/10.11002/kjfp.2015.22.5.727
  4. Identification of characterization and statistical optimization of medium constituent for Bacillus subtilis SCJ4 isolated from Korean traditional fermented food vol.51, pp.1, 2015, https://doi.org/10.7845/kjm.2015.5004
  5. Effect of microencapsulated Bacillus subtilis strain CBD2-fermented grain on loperamide-induced constipation in mice vol.59, pp.3, 2016, https://doi.org/10.1007/s13765-016-0182-7
  6. 발효시간에 따른 아마란스 발효물의 배양특성 및 생리활성 vol.23, pp.4, 2014, https://doi.org/10.11002/kjfp.2016.23.4.568
  7. 김치로부터 단백질 분해 효소활성이 우수한 Bacillus subtilis 균주의 분리 vol.45, pp.1, 2014, https://doi.org/10.4014/mbl.1611.11006
  8. 된장에서 분리한 Bacillus sp. BCNU 9171에 의한 바이오제닉 아민 생산 저해 vol.45, pp.4, 2014, https://doi.org/10.4014/mbl.1707.07002
  9. 퇴비사의 효율적인 운영기술에 대한 고찰 vol.23, pp.4, 2017, https://doi.org/10.7464/ksct.2017.23.4.345
  10. 유용 미생물을 이용한 발효굼벵이 추출물의 이화학적 특성 및 생리활성효과 vol.28, pp.7, 2018, https://doi.org/10.5352/jls.2018.28.7.827
  11. Isolation of Microorganism with High Protease Activity from Doenjang and Production of Doenjang with Isolated Strain vol.50, pp.1, 2014, https://doi.org/10.3746/jkfn.2021.50.1.79