DOI QR코드

DOI QR Code

Ursodeoxycholic Acid Ameliorates Pain Severity and Cartilage Degeneration in Monosodium Iodoacetate-Induced Osteoarthritis in Rats

  • Moon, Su-Jin (Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Jeong, Jeong-Hee (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea) ;
  • Jhun, Joo Yeon (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea) ;
  • Yang, Eun Ji (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea) ;
  • Min, Jun-Ki (Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Choi, Jong Young (Division of Hepatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea) ;
  • Cho, Mi-La (The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea)
  • Received : 2013.12.02
  • Accepted : 2014.02.20
  • Published : 2014.02.28

Abstract

Osteoarthritis (OA) is a degenerative joint disease characterized by a progressive loss of cartilage. And, increased oxidative stress plays a relevant role in the pathogenesis of OA. Ursodeoxycholic acid (UDCA) is a used drug for liver diseases known for its free radical-scavenging property. The objectives of this study were to investigate the in vivo effects of UDCA on pain severity and cartilage degeneration using an experimental OA model and to explore its mode of actions. OA was induced in rats by intra-articular injection of monosodium iodoacetate (MIA) to the knee. Oral administration UDCA was initiated on the day of MIA injection. Limb nociception was assessed by measuring the paw withdrawal latency and threshold. Samples were analyzed macroscopically and histologically. Immunohistochemistry was used to investigate the expression of interleukin-$1{\beta}$ (IL-$1{\beta}$), IL-6, nitrotyrosine and inducible nitric oxide synthase (iNOS) in knee joints. UDCA showed an antinociceptive property and attenuated cartilage degeneration. OA rats given oral UDCA significantly exhibited a decreased number of osteoclasts in subchondral bone legion compared with the vehicle-treated OA group. UDCA reduced the expression of IL-$1{\beta}$, IL-6, nitrotyrosine and iNOS in articular cartilage. UDCA treatment significantly attenuated the mRNA expression of matrix metalloproteinase-3 (MMP-3), -13, and ADAMTS5 in IL-$1{\beta}$-stimulated human OA chondrocytes. These results show the inhibitory effects of UDCA on pain production and cartilage degeneration in experimentally induced OA. The chondroprotective properties of UDCA were achieved by suppressing oxidative damage and inhibiting catabolic factors that are implicated in the pathogenesis of cartilage damage in OA.

Keywords

References

  1. Felson, D. T. 2006. Clinical practice. Osteoarthritis of the knee. N. Engl. J. Med. 354: 841-848. https://doi.org/10.1056/NEJMcp051726
  2. Chadjichristos, C., C. Ghayor, M. Kypriotou, G. Martin, E. Renard, L. Ala-Kokko, G. Suske, B. de Crombrugghe, J. P. Pujol, and P. Galera. 2003. Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J. Biol. Chem. 278: 39762-39772. https://doi.org/10.1074/jbc.M303541200
  3. Guerne, P. A., D. A. Carson, and M. Lotz. 1990. IL-6 production by human articular chondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. J. Immunol. 144: 499-505.
  4. Remans, P. H., C. A. Wijbrandts, M. E. Sanders, R. E. Toes, F. C. Breedveld, P. P. Tak, J. M. van Laar, and K. A. Reedquist. 2006. CTLA-4IG suppresses reactive oxygen species by preventing synovial adherent cell-induced inactivation of Rap1, a Ras family GTPASE mediator of oxidative stress in rheumatoid arthritis T cells. Arthritis Rheum. 54: 3135- 3143. https://doi.org/10.1002/art.22139
  5. Najim, R. A., K. E. Sharquie, and A. R. Abu-Raghif. 2007. Oxidative stress in patients with Behcet's disease: I correlation with severity and clinical parameters. J. Dermatol. 34: 308-314 https://doi.org/10.1111/j.1346-8138.2007.00278.x
  6. Scott, J. L., C. Gabrielides, R. K. Davidson, T. E. Swingler, I. M. Clark, G. A. Wallis, R. P. Boot-Handford, T. B. Kirkwood, R. W. Taylor, and D. A. Young. 2010. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69: 1502-1510. https://doi.org/10.1136/ard.2009.119966
  7. Tiku, M. L., R. Shah, and G. T. Allison. 2000. Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation. Possible role in cartilage aging and the pathogenesis of osteoarthritis. J. Biol. Chem. 275: 20069-20076. https://doi.org/10.1074/jbc.M907604199
  8. Mendes, A. F., M. M. Caramona, A. P. Carvalho, and M. C. Lopes. 2003. Hydrogen peroxide mediates interleukin-1betainduced AP-1 activation in articular chondrocytes: implications for the regulation of iNOS expression. Cell Biol. Toxicol. 19: 203-214. https://doi.org/10.1023/B:CBTO.0000003730.21261.fa
  9. Tiku, M. L., G. T. Allison, K. Naik, and S. K. Karry. 2003. Malondialdehyde oxidation of cartilage collagen by chondrocytes. Osteoarthritis Cartilage 11: 159-166. https://doi.org/10.1016/S1063-4584(02)00348-5
  10. Pelletier, J. P., D. V. Jovanovic, V. Lascau-Coman, J. C. Fernandes, P. T. Manning, J. R. Connor, M. G. Currie, and J. Martel-Pelletier. 2000. Selective inhibition of inducible nitric oxide synthase reduces progression of experimental osteoarthritis in vivo : possible link with the reduction in chondrocyte apoptosis and caspase 3 level. Arthritis Rheum. 43: 1290-1299. https://doi.org/10.1002/1529-0131(200006)43:6<1290::AID-ANR11>3.0.CO;2-R
  11. Poupon, R. E., K. D. Lindor, K. Cauch-Dudek, E. R. Dickson, R. Poupon, and E. J. Heathcote. 1997. Combined analysis of randomized controlled trials of ursodeoxycholic acid in primary biliary cirrhosis. Gastroenterology 113: 884-890. https://doi.org/10.1016/S0016-5085(97)70183-5
  12. Poupon, R. 2012. Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin. Res. Hepatol. Gastroenterol. 36 Suppl 1: S3-12. https://doi.org/10.1016/S2210-7401(12)70015-3
  13. Lapenna, D., G. Ciofani, D. Festi, M. Neri, S. D. Pierdomenico, M. A. Giamberardino, and F. Cuccurullo. 2002. Antioxidant properties of ursodeoxycholic acid. Biochem. Pharmacol. 64: 1661-1667. https://doi.org/10.1016/S0006-2952(02)01391-6
  14. Ljubuncic, P., B. Fuhrman, J. Oiknine, M. Aviram, and A. Bomzon. 1996. Effect of deoxycholic acid and ursodeoxycholic acid on lipid peroxidation in cultured macrophages. Gut 39: 475-478. https://doi.org/10.1136/gut.39.3.475
  15. Lukivskaya, O., L. Zavodnik, M. Knas, and V. Buko. 2006. Antioxidant mechanism of hepatoprotection by ursodeoxycholic acid in experimental alcoholic steatohepatitis. Adv. Med. Sci. 51: 54-59.
  16. Kuettner, K. E., B. U. Pauli, G. Gall, V. A. Memoli, and R. K. Schenk. 1982. Synthesis of cartilage matrix by mammalian chondrocytes in vitro. I. Isolation, culture characteristics, and morphology. J. Cell Biol. 93: 743-750. https://doi.org/10.1083/jcb.93.3.743
  17. Sharma, A. R., S. Jagga, S. S. Lee, and J. S. Nam. 2013. Interplay between Cartilage and Subchondral Bone Contributing to Pathogenesis of Osteoarthritis. Int. J. Mol. Sci. 14: 19805-19830. https://doi.org/10.3390/ijms141019805
  18. Guzman, R. E., M. G. Evans, S. Bove, B. Morenko, and K. Kilgore. 2003. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol. Pathol. 31: 619-624. https://doi.org/10.1080/01926230390241800
  19. Kapoor, M., J. Martel-Pelletier, D. Lajeunesse, J. P. Pelletier, and H. Fahmi. 2011. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat. Rev. Rheumatol. 7: 33-42. https://doi.org/10.1038/nrrheum.2010.196
  20. Kobayashi, K., R. Imaizumi, H. Sumichika, H. Tanaka, M. Goda, A. Fukunari, and H. Komatsu. 2003. Sodium iodoacetate- induced experimental osteoarthritis and associated pain model in rats. J. Vet. Med. Sci. 65: 1195-1199. https://doi.org/10.1292/jvms.65.1195
  21. Chevalier, X., B. Giraudeau, T. Conrozier, J. Marliere, P. Kiefer, and P. Goupille. 2005. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32: 1317-1323.
  22. Sanghi, D., S. Avasthi, A. Mishra, A. Singh, S. Agarwal, and R. N. Srivastava. 2011. Is radiology a determinant of pain, stiffness, and functional disability in knee osteoarthritis? A cross-sectional study. J. Orthop. Sci. 16: 719-725. https://doi.org/10.1007/s00776-011-0147-y
  23. Cotofana, S., B. T. Wyman, O. Benichou, D. Dreher, M. Nevitt, J. Gardiner, W. Wirth, W. Hitzl, C. K. Kwoh, F. Eckstein, and R. B. Frobell. 2013. Relationship between knee pain and the presence, location, size and phenotype of femorotibial denuded areas of subchondral bone as visualized by MRI. Osteoarthritis Cartilage 21: 1214-1222. https://doi.org/10.1016/j.joca.2013.04.001
  24. Dean, D. D., W. Azzo, J. Martel-Pelletier, J. P. Pelletier, and J. F. Woessner, Jr. 1987. Levels of metalloproteases and tissue inhibitor of metalloproteases in human osteoarthritic cartilage. J. Rheumatol. 14 Spec No: 43-44.
  25. Huebner, J. L., I. G. Otterness, E. M. Freund, B. Caterson, and V. B. Kraus. 1998. Collagenase 1 and collagenase 3 expression in a guinea pig model of osteoarthritis. Arthritis Rheum. 41: 877-890. https://doi.org/10.1002/1529-0131(199805)41:5<877::AID-ART16>3.0.CO;2-#
  26. Tanaka, S., C. Hamanishi, H. Kikuchi, and K. Fukuda. 1998. Factors related to degradation of articular cartilage in osteoarthritis: a review. Semin. Arthritis Rheum. 27: 392-399. https://doi.org/10.1016/S0049-0172(98)80019-X
  27. Durigova, M., H. Nagase, J. S. Mort, and P. J. Roughley. 2011. MMPs are less efficient than ADAMTS5 in cleaving aggrecan core protein. Matrix Biol. 30: 145-153. https://doi.org/10.1016/j.matbio.2010.10.007
  28. Song, R. H., M. D. Tortorella, A. M. Malfait, J. T. Alston, Z. Yang, E. C. Arner, and D. W. Griggs. 2007. Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum. 56: 575-585 https://doi.org/10.1002/art.22334
  29. Carlo, M. D. Jr. and R. F. Loeser. 2003. Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum. 48: 3419-3430. https://doi.org/10.1002/art.11338
  30. Poupon, R. E., B. Balkau, E. Eschwege, and R. Poupon. 1991. A multicenter, controlled trial of ursodiol for the treatment of primary biliary cirrhosis. UDCA-PBC Study Group. N. Engl. J. Med. 324: 1548-1554. https://doi.org/10.1056/NEJM199105303242204
  31. Corpechot, C., F. Carrat, A. Bahr, Y. Chretien, R. E. Poupon, and R. Poupon. 2005. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology 128: 297-303. https://doi.org/10.1053/j.gastro.2004.11.009
  32. Okada, K., J. Shoda, K. Taguchi, J. M. Maher, K. Ishizaki, Y. Inoue, M. Ohtsuki, N. Goto, K. Takeda, H. Utsunomiya, K. Oda, E. Warabi, T. Ishii, K. Osaka, I. Hyodo, and M. Yamamoto. 2008. Ursodeoxycholic acid stimulates Nrf2-mediated hepatocellular transport, detoxification, and antioxidative stress systems in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 295: G735-747. https://doi.org/10.1152/ajpgi.90321.2008
  33. Kim, J., Y. N. Cha, and Y. J. Surh. 2010. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat. Res. 690: 12-23. https://doi.org/10.1016/j.mrfmmm.2009.09.007

Cited by

  1. The Role of Protein Arginine Methyltransferases in Inflammatory Responses vol.2016, pp.None, 2014, https://doi.org/10.1155/2016/4028353
  2. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes vol.16, pp.None, 2014, https://doi.org/10.1186/s12896-016-0306-5
  3. Chemical Constituents Identified from Fruit Body of Cordyceps bassiana and Their Anti-Inflammatory Activity vol.25, pp.2, 2014, https://doi.org/10.4062/biomolther.2016.063
  4. Ursodeoxycholic acid: paradigmatic transformation of the prevention of drug-induced liver lesions in clinical practice vol.1, pp.43, 2014, https://doi.org/10.23950/1812-2892-jcmk-00426
  5. Inducible nitric oxide synthase as a target for osteoarthritis treatment vol.22, pp.4, 2014, https://doi.org/10.1080/14728222.2018.1448062
  6. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: Relation with oxidative stress and pain vol.22, pp.3, 2014, https://doi.org/10.1111/1756-185x.13450
  7. Systemic drugs with impact on osteoarthritis vol.51, pp.4, 2019, https://doi.org/10.1080/03602532.2019.1687511
  8. Photobiomodulation therapy in knee osteoarthritis reduces oxidative stress and inflammatory cytokines in rats vol.13, pp.1, 2020, https://doi.org/10.1002/jbio.201900204
  9. Role of iNOS in osteoarthritis: Pathological and therapeutic aspects vol.235, pp.10, 2014, https://doi.org/10.1002/jcp.29607
  10. In vitro and in vivo Effects of a Single Dose of Bupivacaine 5% on Donkey Chondrocytes vol.8, pp.None, 2014, https://doi.org/10.3389/fvets.2021.661426
  11. Anti-arthritic and cartilage damage prevention via regulation of Nrf2/HO-1 signaling by glabridin on osteoarthritis vol.14, pp.7, 2014, https://doi.org/10.1016/j.arabjc.2021.103207
  12. Local administration with tauroursodeoxycholic acid could improve osseointegration of hydroxyapatite-coated titanium implants in ovariectomized rats vol.36, pp.3, 2014, https://doi.org/10.1177/08853282211027678