초다시점 영상 합성을 위한 온라인 삼차원 복원 기술

  • 발행 : 2014.01.31

초록

본 논문에서는 초다시점 (Super Multi-view) 영상 합성을 위한 영상 기반의 온라인 삼차원 복원 기술들을 소개한다. 복원의 정확성을 높이고자 하는 방법은 크게 두 부류로 나뉜다. 먼저 재투영 오차를 비용 함수(Cost function)으로 정의하고, 이를 Bundle Adjustment로부터 최적화를 수행하는 방법과 카메라의 위치와 삼차원 복원 결과에 대해 확률적인 분포를 정의하고 이를 순차적으로 추정하는 확률적인 필터링(Stochastic filtering)에 기반한 방법이 존재한다. 본 논문에서는 두 방법의 장단점을 분석하고, 이로부터 새로운 확률적 필터링에 기반한 3차원 복원 및 카메라 위치 추정 방법을 제안한다. 이로부터 대공간 환경에 적용하여 성능을 검증한다.

키워드

참고문헌

  1. A. Banno, T. Masuda, T. Oishi and K. Ikeuchi, Flying Laser Range Sensor for Large-Scale Site- Modeling and Its Applications in Bayon Digital Archival Project, International Journal of Computer Vision, vol. 78, pp, 207-222.
  2. J. Kim and I. S. Kweon, Vision-based navigation with pose recovery under visual occlusion and kidnapping, IEEE International Conference on Robotics and Automation, 2010.
  3. Noah Snavely, Steven M. Seitz, Richard Szeliski, Photo tourism: Exploring photo collections in 3D, ACM Transactions on Graphics (SIGGRAPH Proceedings), vol. 25, pp. 835-846, 2006 https://doi.org/10.1145/1141911.1141964
  4. B. Triggs, P. McLauchlan, R. Hartley and A. Fitzgibbon, Bundle adjustment - a modern synthesis, LNCS (Vision Algorithms: Theory and Practice),2000.
  5. E. Mouragnon, M. Lhuillier, M. Dhome, F. Dekeyser, and P. Sayd, Real Time Localization and 3D Reconstruction, IEEE Conference on Computer Vision and Pattern Recognition, pp.363 - 370, 2006.
  6. G. Klein and D. Murray, Parallel Tracking and Mapping for Small AR Workspaces, International Symposium on Mixed and Augmented Reality, 2007.
  7. A. J. Davison, I. D. Reid, N. Molton, O. Stasse, MonoSLAM: Real-Time Single Camera SLAM, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6, 1052-1067, 2007. https://doi.org/10.1109/TPAMI.2007.1049
  8. M. Montemerlo, W. Whittaker and S. Thrun, FastSLAM: A factored solution to the simultaneous localization and mapping problem, In Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 593-598, 2002.
  9. R. Sim, P. Elinas, M. Griffin and J. J. Little, Visionbased SLAM using the Rao-Blackwellized Particle Filter, IJCAI Workshop Reasoning with Uncertainty in Robotics, 2005.
  10. C. Kim, R. Sakthivel and W. K. Chung, Unscented FastSLAM: A Robust and Efficient Solution to the SLAM Problem, IEEE Transactions on Robotics, vol. 24, no. 4, pp. 808-820, 2008. https://doi.org/10.1109/TRO.2008.924946
  11. R. Haralick, C. Lee, K. Ottenberg and M. Nolle, Review and Analysis of Solutions of the Three Point Perspective Pose Estimation Problem, International Journal of Computer Vision, vol. 13, no. 3, pp. 331-356, 1994. https://doi.org/10.1007/BF02028352
  12. D. Nister, O. Naroditsky and J. Bergen, Visual Odometry, IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 652-659, 2004.
  13. M. Fischler and R. Bolles, Random Sample Consensus: a Paradigm for Model Fitting with Application to Image Analysis and Automated Cartography, Communications ACM, 1981.
  14. Yasutaka Furukawa and Jean Ponce Accurate, Dense, and Robust Multi-View Stereopsis IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 32, Issue 8, Pages 1362-1376, August 2010. https://doi.org/10.1109/TPAMI.2009.161