DOI QR코드

DOI QR Code

A review of nanomaterials based membranes for removal of contaminants from polluted waters

  • Amin, Muhammad T. (Alamoudi Water Research Chair, King Saud University) ;
  • Alazba, Abdulrahman A. (Alamoudi Water Research Chair, King Saud University)
  • Received : 2014.01.14
  • Accepted : 2014.05.12
  • Published : 2014.04.25

Abstract

Safe water has becoming a competitive resource in many parts of the world due to increasing population, prolonged droughts, climate change etc. The development of economical and stable materials and methods for providing the fresh water in adequate amounts is the need of the water industry. Nanomaterials have unique characteristics e.g., large surface areas, size, shape, and dimensions etc. that make them particularly attractive for removing various contaminants from polluted waters. Nanotechnology based multifunctional and highly efficient membrane processes are providing affordable solutions in the new era that do not rely on large infrastructures or centralizes systems. The objective of the current study is to review the possible applications of the membrane based nanomaterials/composites for the removal of various contaminations from polluted waters. The article will briefly overview the availability and practice of different nanomaterials based membranes for removal of bacteria and viruses, organic compounds and inorganic solutes etc. present in surface water, ground water, seawater and/or industrial water. Finally, recommendations are made based on the current practices of nanofiltration membranes in water industry for a stand-alone membrane filtration system in removing various types of contaminants from polluted waters.

Keywords

References

  1. Adams, C., Wang, Y., Loftin, K. and Meyer, M. (2002), "Removal of Antibiotics from Surface and Distilled Water in Conventional Water Treatment Processes", J. Environ. Eng., 128(3), 253-260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
  2. Adesina, A.A. (2004), "Industrial exploitation of photocatalysis: progress, perspectives and prospects", Catal. Surv. Asia, 8(4), 265-273. https://doi.org/10.1007/s10563-004-9117-0
  3. Ahmad, A.L. Ooi, B.S. Wahab Mohammad, A. and Choudhury, J.P. (2004), "Development of a highly hydrophilic nanofiltration membrane for desalination and water treatment", Desalination, 168, 215-221. https://doi.org/10.1016/j.desal.2004.07.001
  4. Ahmed, F., Santos, C.M., Vergara, R.A.M.V., Tria, M.C.R., Advincula, R. and Rodrigues, D.F. (2012), "Antimicrobial applications of electroactive PVK-SWNT nanocomposites", Environ. Sci. Technol., 46(3), 1804-1810. https://doi.org/10.1021/es202374e
  5. Akasaka, T. and Watari, F. (2009), "Capture of bacteria by flexible carbon nanotubes", Acta Biomater., 5(2), 607-612. https://doi.org/10.1016/j.actbio.2008.08.014
  6. Allabashi, R., Arkas, M., Hormann, G., and Tsiourvas, D. (2007), "Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers", Water Res., 41(2), 476-486. https://doi.org/10.1016/j.watres.2006.10.011
  7. Alrousan, D.M.A., Dunlop, P.S.M., McMurray, T.A. and Byrne, J.A. (2009), "Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle $TiO_{2}$ films", Water Res., 43(1), 47-54. https://doi.org/10.1016/j.watres.2008.10.015
  8. Arias, L.R. and Yang, L. (2009), "Inactivation of bacterial pathogens by carbon nanotubes in suspensions", Langmuir ACS J. Surf. Colloids, 25(5), 3003-3012. https://doi.org/10.1021/la802769m
  9. Arjmandi, N., Sasanpour, P. and Rashidian, B. (2009), "CVD synthesis of small-diameter single-walled carbon nanotubes on silicon", Sci. Iran. Trans. D, 16(1), 61-64.
  10. Arkas, M., Allabashi, R., Tsiourvas, D., Mattausch, E.-M. and Perfler, R. (2006), "Organic/Inorganic hybrid filters based on dendritic and cyclodextrin 'nanosponges' for the removal of organic pollutants from water", Environ. Sci. Technol., 40(8), 2771-2777. https://doi.org/10.1021/es052290v
  11. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. and Taga, Y. (2001), "Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293(5528), 269-271. https://doi.org/10.1126/science.1061051
  12. Bae, T.-H. and Tak, T.-M. (2005), "Effect of $TiO_{2}$ nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration", J. Membr. Sci., 249(1-2), 1-8. https://doi.org/10.1016/j.memsci.2004.09.008
  13. Bai, J., Zhong, X., Jiang, S., Huang, Y. and Duan, X. (2010), "Graphene nanomesh", Nat. Nanotechnol., 5(3), 190-194. https://doi.org/10.1038/nnano.2010.8
  14. Baker, C., Pradhan, A., Pakstis, L., Pochan, D.J. and Shah, S.I. (2005), "Synthesis and antibacterial properties of silver nanoparticles", J. Nanosci. Nanotechnol., 5(2), 244-249. https://doi.org/10.1166/jnn.2005.034
  15. Balogh, L., Swanson, D.R., Tomalia, D.A., Hagnauer, G.L. and McManus, A.T. (2001), "Dendrimer-silver complexes and nanocomposites as antimicrobial agents", Nano Lett., 1(1), 18-21. https://doi.org/10.1021/nl005502p
  16. Barhate, R.S. and Ramakrishna, S. (2007), "Nanofibrous filtering media: Filtration problems and solutions from tiny materials", J. Membr. Sci., 296(1-2), 1-8. https://doi.org/10.1016/j.memsci.2007.03.038
  17. Becher, G. (1999), "Drinking water chlorination and health", Acta Hydrochim. Hydrobiol., 27(2), 100-102. https://doi.org/10.1002/(SICI)1521-401X(199902)27:2<100::AID-AHEH100>3.0.CO;2-A
  18. Belhacova, L., Krysa, J., Geryk, J. and Jirkovsky, J. (1999), "Inactivation of microorganisms in a flow-through photoreactor with an immobilized $TiO_{2}$ layer", J. Chem. Technol. Biotechnol., 74(2), 149-154. https://doi.org/10.1002/(SICI)1097-4660(199902)74:2<149::AID-JCTB2>3.0.CO;2-Q
  19. Bhattacharyya, D., Hestekin, J.A., Brushaber, P., Cullen, L., Bachas, L.G. and Sikdar, S.K. (1998), "Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity", J. Membr. Sci., 141(1), 121-135. https://doi.org/10.1016/S0376-7388(97)00301-3
  20. Birnbaum, E.R., Rau, K.C. and Sauer, N.N. (2003), "Selective anion binding from water using soluble polymers", Sep. Sci. Technol., 38(2), 389-404. https://doi.org/10.1081/SS-120016581
  21. Black, M. (1998), "Learning what works: A 20 year retrospective view on international water and sanitation cooperation", Washington DC, World Bank.
  22. Bodzek, M., Dudziak, M. and Luks-Betlej, K. (2004), "Application of membrane techniques to water purification. Removal of phthalates", Desalination, 162, 121-128. https://doi.org/10.1016/S0011-9164(04)00035-9
  23. Bolong, N., Ismail, A.F., Salim, M.R. and Matsuura, T. (2009), "A review of the effects of emerging contaminants in wastewater and options for their removal", Desalination, 239(1-3), 229-246. https://doi.org/10.1016/j.desal.2008.03.020
  24. Botes, M. and Cloete, T.E. (2010), "The potential of nanofibers and nanobiocides in water purification", Crit. Rev. Microbiol., 36(1), 68-81. https://doi.org/10.3109/10408410903397332
  25. Bottero, J.-Y., Rose, J. and Wiesner, M.R. (2006), "Nanotechnologies: Tools for sustainability in a new wave of water treatment processes", Integr. Environ. Assess. Manag., 2(4), 391-395. https://doi.org/10.1002/ieam.5630020411
  26. Bottino, A., Capannelli, G. and Comite, A. (2002), "Preparation and characterization of novel porous PVDF-ZrO2 composite membranes", Desalination, 146(1-3), 35-40. https://doi.org/10.1016/S0011-9164(02)00469-1
  27. Bottino, A., Capannelli, G., D'Asti, V. and Piaggio, P. (2001), "Preparation and properties of novel organic-inorganic porous membranes", Sep. Purif. Technol., 22-23, 269-275. https://doi.org/10.1016/S1383-5866(00)00127-1
  28. Brady-Estevez, A.S., Kang, S. and Elimelech, M. (2008), "A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens", Small, 4(4), 481-484. https://doi.org/10.1002/smll.200700863
  29. Brady-Estevez, A.S., Schnoor, M.H., Kang, S. and Elimelech, M. (2010), "SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation", Langmuir, 26(24), 19153-19158. https://doi.org/10.1021/la103776y
  30. Braeken, L., Bettens, B., Boussu, K., Van der Meeren, P., Cocquyt, J., Vermant, J. and Van der Bruggen, B. (2006), "Transport mechanisms of dissolved organic compounds in aqueous solution during nanofiltration", J. Membr. Sci., 279(1-2), 311-319. https://doi.org/10.1016/j.memsci.2005.12.024
  31. Burda, C., Lou, Y., Chen, X., Samia, A.C.S., Stout, J. and Gole, J.L. (2003), "Enhanced nitrogen doping in $TiO_{2}$ nanoparticles", Nano Lett., 3(8), 1049-1051. https://doi.org/10.1021/nl034332o
  32. Celik, E., Park, H., Choi, H. and Choi, H. (2011), "Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment", Water Res., 45(1), 274-282. https://doi.org/10.1016/j.watres.2010.07.060
  33. Chae, S.-R., Wang, S., Hendren, Z.D., Wiesner, M.R., Watanabe, Y. and Gunsch, C.K. (2009), "Effects of fullerene nanoparticles on Escherichia coli K12 respiratory activity in aqueous suspension and potential use for membrane biofouling control", J. Membr. Sci., 329(1-2), 68-74. https://doi.org/10.1016/j.memsci.2008.12.023
  34. Chatterjee, A.N., Cannon, D.M., Gatimu, E.N., Sweedler, J.V., Aluru, N.R. and Bohn, P.W. (2005), "Modeling and simulation of ionic currents in three-dimensional microfluidic devices with nanofluidic interconnects", J. Nanoparticle Res., 7(4-5), 507-516. https://doi.org/10.1007/s11051-005-5133-x
  35. Chaturvedi, S., Dave, P.N. and Shah, N.K. (2012), "Applications of nano-catalyst in new era", J. Saudi Chem. Soc., 16(3), 307-325. https://doi.org/10.1016/j.jscs.2011.01.015
  36. Chen, C.-Y. and Chiang, C.-L. (2008), "Preparation of cotton fibers with antibacterial silver nanoparticles", Mater. Lett., 62(21-22), 3607-3609. https://doi.org/10.1016/j.matlet.2008.04.008
  37. Chen, Y., Wang, L., Jiang, S. and Yu, H. (2003), "Study on novel antibacterial polymer materials (I) preparation of zeolite antibacterial agents and antibacterial polymer composite and their antibacterial properties", J. Polym. Mater., 20, 279-284.
  38. Cho, M., Chung, H., Choi, W. and Yoon, J. (2004), "Linear correlation between inactivation of E. coli and OH radical concentration in $TiO_{2}$ photocatalytic disinfection", Water Res., 38(4), 1069-1077. https://doi.org/10.1016/j.watres.2003.10.029
  39. Cho, M., Chung, H., Choi, W. and Yoon, J. (2005), "Different inactivation behaviors of MS-2 phage and escherichia coli in $TiO_{2}$ photocatalytic disinfection", Appl. Environ. Microbiol., 71(1), 270-275. https://doi.org/10.1128/AEM.71.1.270-275.2005
  40. Chou, W.-L., Yu, D.-G. and Yang, M.-C. (2005), "The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment", Polym. Adv. Technol., 16(8), 600-607. https://doi.org/10.1002/pat.630
  41. Choi, J.-H., Jegal, J. and Kim, W.-N. (2006a), "Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes", J. Membr. Sci., 284(1-2), 406-415. https://doi.org/10.1016/j.memsci.2006.08.013
  42. Choi, H., Stathatos, E. and Dionysiou, D.D. (2006b), "Sol-gel preparation of mesoporous photocatalytic $TiO_{2}$ films and $TiO_{2}$/$Al_{2}O_{3}$ composite membranes for environmental applications", Appl. Catal. B Environ., 63(1-2), 60-67. https://doi.org/10.1016/j.apcatb.2005.09.012
  43. Choi, H., Al-Abed, S.R. and Dionysiou, D.D. (2009), "Chapter 3 - Nanostructured titanium oxide film- and membrane-based photocatalysis for water treatment", (N. Savage, M. Diallo, J. Duncan, A. Street and R. Sustich Eds.), Nanotechnology Applications for Clean Water, Micro and Nano Technologies, William Andrew Publishing, Boston, MA, USA, pp. 39-46. [online] http://www.sciencedirect.com/science/article/pii/B9780815515784500123 (Accessed November 20, 2013).
  44. Coetser, S.E., Heath, R.G.M. and Ndombe, N. (2007), "Diffuse pollution associated with the mining sectors in South Africa: a first-order assessment", Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 55(3), 9-16.
  45. Corry, B. (2008), "Designing carbon nanotube membranes for efficient water desalination", J. Phys. Chem. B, 112(5), 1427-1434. https://doi.org/10.1021/jp709845u
  46. Cortalezzi, M.M., Rose, J., Barron, A.R. and Wiesner, M.R. (2002), "Characteristics of ultrafiltration ceramic membranes derived from alumoxane nanoparticles", J. Membr. Sci., 205(1-2), 33-43. https://doi.org/10.1016/S0376-7388(02)00049-2
  47. Cortalezzi, M.M., Rose, J., Wells, G.F., Bottero, J.-Y., Barron, A.R. and Wiesner, M.R. (2003), "Ceramic membranes derived from ferroxane nanoparticles: a new route for the fabrication of iron oxide ultrafiltration membranes", J. Membr. Sci., 227(1-2), 207-217. https://doi.org/10.1016/j.memsci.2003.08.027
  48. Danilczuk, M., Lund, A., Sadlo, J., Yamada, H. and Michalik, J. (2006), "Conduction electron spin resonance of small silver particles", Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 63(1), 189-191. https://doi.org/10.1016/j.saa.2005.05.002
  49. DeFriend, K.A., Wiesner, M.R. and Barron, A.R. (2003), "Alumina and aluminate ultrafiltration membranes derived from alumina nanoparticles", J. Membr. Sci., 224(1-2), 11-28. https://doi.org/10.1016/S0376-7388(03)00344-2
  50. De Gusseme, B., Hennebel, T., Christiaens, E., Saveyn, H., Verbeken, K., Fitts, J.P., Boon, N. and Verstraete, W. (2011), "Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes", Water Res., 45(4), 1856-1864. https://doi.org/10.1016/j.watres.2010.11.046
  51. Deliyanni, E.A., Bakoyannakis, D.N., Zouboulis, A.I. and Matis, K.A. (2003), "Sorption of As(V) ions by akaganeite-type nanocrystals", Chemosphere, 50(1), 155-163. https://doi.org/10.1016/S0045-6535(02)00351-X
  52. Deng, S., Upadhyayula, V.K.K.. Smith, G.B. and Mitchell, M.C. (2008), "Adsorption Equilibrium and Kinetics of Microorganisms on Single-Wall Carbon Nanotubes", IEEE Sens. J., 8(6), 954-962. https://doi.org/10.1109/JSEN.2008.923929
  53. Diallo, M.S., Christie, S., Swaminathan, P., Johnson, J.H. Jr. and Goddard, W.A. (2005), "Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal $NH_{2}$ groups", Environ. Sci. Technol., 39(5), 1366-1377. https://doi.org/10.1021/es048961r
  54. Di Valentin, C., Pacchioni, G. and Selloni, A. (2004), "Origin of the different photoactivity of N-doped anatase and rutile $TiO_{2}$", Phys. Rev. B, 70(8). [online] http://adsabs.harvard.edu/abs/2004PhRvB..70h5116D (Accessed November 19, 2013).
  55. Diwald, O., Thompson, T.L., Zubkov, T., Walck, S.D. and Yates, J.T. (2004), "Photochemical activity of nitrogen-doped rutile $TiO_{2}$(110) in visible light", J. Phys. Chem. B, 108(19), 6004-6008. https://doi.org/10.1021/jp031267y
  56. Dotzauer, D.M., Dai, J., Sun, L. and Bruening, M.L. (2006), "Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports", Nano Lett., 6(10), 2268-2272. https://doi.org/10.1021/nl061700q
  57. Duke, M.C., Mee, S. and da Costa, J.C.D. (2007), "Performance of porous inorganic membranes in non-osmotic desalination", Water Res., 41(17), 3998-4004. https://doi.org/10.1016/j.watres.2007.05.028
  58. Ebert, K., Fritsch, D., Koll, J. and Tjahjawiguna, C. (2004), "Influence of inorganic fillers on the compaction behaviour of porous polymer based membranes", J. Membr. Sci., 233(1-2), 71-78. https://doi.org/10.1016/j.memsci.2003.12.012
  59. Einaga, H., Futamura, S. and Ibusuki, T. (1999), "Photocatalytic decomposition of benzene over $TiO_{2}$ in a humidified airstream", Phys. Chem. Chem. Phys., 1(20), 4903-4908. https://doi.org/10.1039/a906214i
  60. Eshelby, K. (2007), "Dying for a drink", BMJ, 334(7594), 610-612. https://doi.org/10.1136/bmj.39150.398009.BEimages
  61. Esteban-Cubillo, A., Pecharroman, C., Aguilar, E., Santaren, J. and Moya, J.S. (2006), "Antibacterial activity of copper monodispersed nanoparticles into sepiolite", J. Mater. Sci., 41(16), 5208-5212. https://doi.org/10.1007/s10853-006-0432-x
  62. Favre-Reguillon, A., Lebuzit, G., Foos, J., Guy, A., Draye, M. and Lemaire, M. (2003), "Selective concentration of uranium from seawater by nanofiltration", Ind. Eng. Chem. Res., 42(23), 5900-5904. https://doi.org/10.1021/ie030157a
  63. Feng, Q.L., Wu, J., Chen, G.Q., Cui, F.Z., Kim, T.N. and Kim, J.O. (2000), "A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus", J. Biomed. Mater. Res., 52(4), 662-668. https://doi.org/10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3
  64. Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coel, M.T., Daily, G.C., Gibbs, H.K., Helkowskil, J.H., Holloway, T., Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., Ramankutty, N. and Snyder, P.K. (2005), "Global consequences of land use", Science, 309(5734), 570-574. https://doi.org/10.1126/science.1111772
  65. Fornasiero, F., Park, H.G., Holt, J.K., Stadermann, M., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2008), "Ion exclusion by sub-2-nm carbon nanotube pores", Proceedings of the National Academy of Science of the United States of America, 105(45), 17250-17255. https://doi.org/10.1073/pnas.0710437105
  66. Frenot, A. and Chronakis, I.S. (2003), "Polymer nanofibers assembled by electrospinning", Curr. Opin. Colloid Interface Sci., 8(1), 64-75. https://doi.org/10.1016/S1359-0294(03)00004-9
  67. Fujishima, A., Rao, T.N. and Tryk, D.A. (2000), "Titanium dioxide photocatalysis", J. Photochem. Photobiol. C Photochem. Rev., 1(1), 1-21. https://doi.org/10.1016/S1389-5567(00)00002-2
  68. Fujishima, A., Zhang, X. and Tryk, D.A. (2008), "$TiO_{2}$ photocatalysis and related surface phenomena", Surf. Sci. Rep., 63(12), 515-582. https://doi.org/10.1016/j.surfrep.2008.10.001
  69. Geng, H.-Z., Kim, K.K., So, K.P., Lee, Y.S., Chang, Y. and Lee, Y.H. (2007), "Effect of acid treatment on carbon nanotube-based flexible transparent conducting films", J. Am. Chem. Soc., 129(25), 7758-7759. https://doi.org/10.1021/ja0722224
  70. Godfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M. and Toulmin, C. (2010), "Food security: The challenge of feeding 9 billion people", Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383
  71. Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotubereinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002
  72. Gong, X., Li, J., Lu, H., Wan, R., Li, J., Hu, J. and Fang, H. (2007), "A charge-driven molecular water pump", Nat. Nanotechnol., 2(11), 709-712. https://doi.org/10.1038/nnano.2007.320
  73. Gopal, K., Tripathy, S.S., Bersillon, J.L. and Dubey, S.P. (2007), "Chlorination byproducts, their toxicodynamics and removal from drinking water.", J. Hazard. Mater., 140(1-2), 1-6. https://doi.org/10.1016/j.jhazmat.2006.10.063
  74. Hajkova, P., Spatenka, P., Horsky, J., Horska, I. and Kolouch, A. (2007), "Photocatalytic effect of $TiO_{2}$ films on viruses and bacteria", Plasma Process. Polym., 4(S1), S397-S401. https://doi.org/10.1002/ppap.200731007
  75. Han, X., Kuang, Q., Jin, M., Xie, Z. and Zheng, L. (2009), "Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties", J. Am. Chem. Soc., 131(9), 3152-3153. https://doi.org/10.1021/ja8092373
  76. Hashimoto, K., Irie, H. and Fujishima, A. (2005), "$TiO_{2}$ photocatalysis: A historical overview and future prospects", Jpn. J. Appl. Phys., 44(12), 8269-8285. https://doi.org/10.1143/JJAP.44.8269
  77. Hinds, B. (2012), "Dramatic transport properties of carbon nanotube membranes for a robust protein channel mimetic platform", Curr. Opin. Solid State Mater. Sci., 16(1), 1-9. https://doi.org/10.1016/j.cossms.2011.05.003
  78. Hinds, B.J., Chopra, N., Rantell, T., Andrews, R., Gavalas, V. and Bachas, L.G. (2004), "Aligned multiwalled carbon nanotube membranes", Science, 303(5654), 62-65. https://doi.org/10.1126/science.1092048
  79. Hoek, E.M.V. and Ghosh, A.K. (2009), "Chapter 4 - Nanotechnology-based membranes for water purification", (N. Savage, M. Diallo, J. Duncan, A. Street, and R. Sustich Eds.), Nanotechnology Applications for Clean Water, Micro and Nano Technologies, William Andrew Publishing, Boston, MA, USA, pp. 47-58. [online] http://www.sciencedirect.com/science/article/pii/B9780815515784500135 (Accessed November 20, 2013).
  80. Hollman, A.M. and Bhattacharyya, D. (2004), "Pore assembled multilayers of charged polypeptides in microporous membranes for ion separation", Langmuir, 20(13), 5418-5424. https://doi.org/10.1021/la049688+
  81. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312(5776), 1034-1037. https://doi.org/10.1126/science.1126298
  82. Hozalski, R.M., Zhang, L. and Arnold, W.A. (2001), "Reduction of haloacetic acids by Fe0: Implications for treatment and fate", Environ. Sci. Technol., 35(11), 2258-2263. https://doi.org/10.1021/es001785b
  83. Hristovski, K.D., Nguyen, H. and Westerhoff, P.K. (2009a), "Removal of arsenate and $17{\alpha}$-ethinyl estradiol (EE2) by iron (hydr)oxide modified activated carbon fibers", J. Environ. Sci. Health Part A, 44(4), 354-361. https://doi.org/10.1080/10934520802659695
  84. Hristovski, K.D., Westerhoff, P.K., Moller, T. and Sylvester, P. (2009b), "Effect of synthesis conditions on nano-iron (hydr)oxide impregnated granulated activated carbon", Chem. Eng. J., 146(2), 237-243. https://doi.org/10.1016/j.cej.2008.05.040
  85. Ibanez, J.A., Litter, M.I. and Pizarro, R.A. (2003), "Photocatalytic bactericidal effect of $TiO_{2}$ on Enterobacter cloacae: Comparative study with other Gram (-) bacteria", J. Photochem. Photobiol. Chem., 157(1), 81-85. https://doi.org/10.1016/S1010-6030(03)00074-1
  86. Inoue, Y., Hoshino, M., Takahashi, H., Noguchi, T., Murata, T., Kanzaki, Y., Hamashima, H. and Sasatsu, M. (2002), "Bactericidal activity of Ag-zeolite mediated by reactive oxygen species under aerated conditions", J. Inorg. Biochem., 92(1), 37-42. https://doi.org/10.1016/S0162-0134(02)00489-0
  87. Irie, H., Watanabe, Y. and Hashimoto, K. (2003), "Nitrogen-concentration dependence on photocatalytic activity of $TiO_{2}$-xNx powders", J. Phys. Chem. B, 107(23), 5483-5486. https://doi.org/10.1021/jp030133h
  88. Jadav, G.L. and Singh, P.S. (2009), "Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties", J. Membr. Sci., 328(1-2), 257-267. https://doi.org/10.1016/j.memsci.2008.12.014
  89. Jain, P. and Pradeep, T. (2005), "Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter", Biotechnol. Bioeng., 90(1), 59-63. https://doi.org/10.1002/bit.20368
  90. Jeon, H.J., Kim, J.S., Kim, T.G., Kim, J.H., Yu, W.-R. and Youk, J.H. (2008), "Preparation of poly($\varepsilon$-caprolactone)-based polyurethane nanofibers containing silver nanoparticles", Appl. Surf. Sci., 254(18), 5886-5890. https://doi.org/10.1016/j.apsusc.2008.03.141
  91. Jeong, B.-H., Hoek, E.M.V., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K. and Jawor, A. (2007), "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294(1-2), 1-7. https://doi.org/10.1016/j.memsci.2007.02.025
  92. Jiang, D., Cooper, V.R. and Dai, S. (2009), "Porous graphene as the ultimate membrane for gas separation", Nano Lett., 9(12), 4019-4024. https://doi.org/10.1021/nl9021946
  93. Johnson, D.M., Hokanson, D.R., Zhang, Q., Czupinski, K.D. and Tang, J. (2008), "Feasibility of water purification technology in rural areas of developing countries", J. Environ. Manage., 88(3), 416-427. https://doi.org/10.1016/j.jenvman.2007.03.002
  94. Joo, J., Kwon, S.G., Yu, T., Cho, M., Lee, J., Yoon, J. and Hyeon, T. (2005), "Large-scale synthesis of $TiO_{2}$ nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli", J. Phys. Chem. B, 109(32), 15297-15302. https://doi.org/10.1021/jp052458z
  95. Jury, W.A. and Vaux, H. Jr. (2005), "The role of science in solving the world's emerging water problems", Proceedings of the National Academy of Science of the United States of America, 102(44), 15715-15720. https://doi.org/10.1073/pnas.0506467102
  96. Kabra, K., Chaudhary, R. and Sawhney, R.L. (2004), "Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: A review", Ind. Eng. Chem. Res., 43(24), 7683-7696. https://doi.org/10.1021/ie0498551
  97. Kang, S., Pinault, M., Pfefferle, L.D. and Elimelech, M. (2007), "Single-walled carbon nanotubes exhibit strong antimicrobial asctivity", Langmuir, 23(17), 8670-8673. https://doi.org/10.1021/la701067r
  98. Kang, S., Herzberg, M., Rodrigues, D.F. and Elimelech, M. (2008a), "Antibacterial effects of carbon nanotubes: Size does matter!", Langmuir, 24(13), 6409-6413. https://doi.org/10.1021/la800951v
  99. Kang, S., Mauter, M.S. and Elimelech, M. (2008b), "Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity", Environ. Sci. Technol., 42(19), 7528-7534. https://doi.org/10.1021/es8010173
  100. Karnik, B.S., Davies, S.H.R., Baumann, M.J. and Masten, S.J. (2005a), "Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration", Environ. Sci. Technol., 39(19), 7656-7661. https://doi.org/10.1021/es0503938
  101. Karnik, B.S., Davies, S.H.R., Chen, K.C., Jaglowski, D.R., Baumann, M.J. and Masten, S.J. (2005b), "Effects of ozonation on the permeate flux of nanocrystalline ceramic membranes", Water Res., 39(4), 728-734. https://doi.org/10.1016/j.watres.2004.11.017
  102. Kemper, K. (2004), "Groundwater - from development to management", Hydrogeol. J., 12(1), 3-5. https://doi.org/10.1007/s10040-003-0305-1
  103. Khan, S.U.M., Al-Shahry, M. and Ingler, W.B. (2002), "Efficient photochemical water splitting by a chemically modified n-$TiO_{2}$", Science, 297(5590), 2243-2245. https://doi.org/10.1126/science.1075035
  104. Kim, S.H., Kwak, S.-Y., Sohn, B.-H. and Park, T.H. (2003), "Design of $TiO_{2}$ nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem", J. Membr. Sci., 211(1), 157-165. https://doi.org/10.1016/S0376-7388(02)00418-0
  105. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.-H., Park, S.J., Lee, H.J. Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H. and Cho, M.H. (2007), "Antimicrobial effects of silver nanoparticles", Nanomedicine Nanotechnol. Biol. Med., 3(1), 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  106. Kim, J., Davies, S.H.R., Baumann, M.J., Tarabara, V.V. and Masten, S.J. (2008), "Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation-ceramic ultrafiltration system treating natural waters", J. Membr. Sci., 311(1-2), 165-172. https://doi.org/10.1016/j.memsci.2007.12.010
  107. Kiso, Y., Kon, T., Kitao, T. and Nishimura, K. (2001), "Rejection properties of alkyl phthalates with nanofiltration membranes", J. Membr. Sci., 182(1-2), 205-214. https://doi.org/10.1016/S0376-7388(00)00567-6
  108. Kiwi, J. and Nadtochenko, V. (2005), "Evidence for the mechanism of photocatalytic degradation of the bacterial wall membrane at the $TiO_{2}$ interface by ATR-FTIR and laser kinetic spectroscopy", Langmuir, 21(10), 4631-4641. https://doi.org/10.1021/la046983l
  109. Kubacka, A., Ferrer, M., Cerrada, M.L., Serrano, C., Sanchez-Chaves, M., Fernandez-Garcia, M., de Andresc, A., Riobooc, R.J.J., Fernandez-Martind, F. and Fernandez-Garcia, M. (2009), "Boosting $TiO_{2}$-anatase antimicrobial activity: Polymer-oxide thin films", Appl. Catal. B Environ., 89(3-4), 441-447. https://doi.org/10.1016/j.apcatb.2009.01.002
  110. Kumar, V.S., Nagaraja, B.M., Shashikala, V., Padmasri, A.H., Madhavendra, S.S., Raju, B.D. and Rao, K.S.R. (2004), "Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water", J. Mol. Catal. Chem., 223(1-2), 313-319. https://doi.org/10.1016/j.molcata.2003.09.047
  111. Kwak, S.Y., Kim, S.H. and Kim, S.S. (2001), "Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of $TiO_{2}$ nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane", Environ. Sci. Technol., 35(11), 2388-2394. https://doi.org/10.1021/es0017099
  112. Lala, N.L., Ramaseshan, R., Li, B., Sundarrajan, S., Barhate, R.S., Liu, Y.J. and Ramakrishna, S. (2007), "Fabrication of nanofibers with antimicrobial functionality used as filters: protection against bacterial contaminants", Biotechnol. Bioeng., 97(6), 1357-1365. https://doi.org/10.1002/bit.21351
  113. Lee, H.J., Yeo, S.Y. and Jeong, S.H. (2003), "Antibacterial effect of nanosized silver colloidal solution on textile fabrics", J. Mater. Sci., 38(10), 2199-2204. https://doi.org/10.1023/A:1023736416361
  114. Lee, S.-H., Pumprueg, S., Moudgil, B. and Sigmund, W. (2005), "Inactivation of bacterial endospores by photocatalytic nanocomposites", Colloids Surf. B Biointerfaces, 40(2), 93-98. https://doi.org/10.1016/j.colsurfb.2004.05.005
  115. Lee, S.Y., Kim, H.J., Patel, R., Im, S.J., Kim, J.H. and Min, B.R. (2007), "Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties", Polym. Adv. Technol., 18(7), 562-568. https://doi.org/10.1002/pat.918
  116. Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R. (2008), "Polyamide thin-film nanofiltration membranes containing $TiO_{2}$ nanoparticles", Desalination, 219(1-3), 48-56. https://doi.org/10.1016/j.desal.2007.06.003
  117. Li, L. and Lee, R. (2009), "Purification of produced water by ceramic membranes: Material screening, process design and economics", Sep. Sci. Technol., 44(15), 3455-3484. https://doi.org/10.1080/01496390903253395
  118. Li, L., Dong, J., Nenoff, T.M. and Lee, R. (2004), "Desalination by reverse osmosis using MFI zeolite membranes", J. Membr. Sci., 243(1-2), 401-404. https://doi.org/10.1016/j.memsci.2004.06.045
  119. Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D. and Alvarez, P.J.J. (2008a), "Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications", Water Res., 42(18), 4591-4602. https://doi.org/10.1016/j.watres.2008.08.015
  120. Li, L., Liu, N., McPherson, B. and Lee, R. (2008b), "Influence of counter ions on the reverse osmosis through MFI zeolite membranes: implications for produced water desalination", Desalination, 228(1-3), 217-225. https://doi.org/10.1016/j.desal.2007.10.010
  121. Li, J.-F., Xu, Z.-L., Yang, H., Yu, L.-Y. and Liu, M. (2009a), "Effect of $TiO_{2}$ nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
  122. Li, J.-H., Xu, Y.-Y., Zhu, L.-P., Wang, J.-H. and Du, C.-H. (2009b), "Fabrication and characterization of a novel $TiO_{2}$ nanoparticle self-assembly membrane with improved fouling resistance", J. Membr. Sci., 326(2), 659-666. https://doi.org/10.1016/j.memsci.2008.10.049
  123. Liau, S.Y., Read, D.C., Pugh, W.J., Furr, J.R. and Russell, A.D. (1997), "Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterialaction of silver ions", Lett. Appl. Microbiol., 25(4), 279-283. https://doi.org/10.1046/j.1472-765X.1997.00219.x
  124. Liga, M.V., Bryant, E.L., Colvin, V.L. and Li, Q. (2011), "Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment", Water Res., 45(2), 535-544. https://doi.org/10.1016/j.watres.2010.09.012
  125. Lin, H.F., Ravikrishna, R. and Valsaraj, K.T. (2002), "Reusable adsorbents for dilute solution separation. 6. Batch and continuous reactors for the adsorption and degradation of 1,2-dichlorobenzene from dilute wastewater streams using titania as a photocatalyst", Sep. Purif. Technol., 28(2), 87-102. https://doi.org/10.1016/S1383-5866(02)00017-5
  126. Lin, L., Lin, W., Zhu, Y.X., Zhao, B.Y., Xie, Y.C., He, Y. and Zhu, Y.F. (2005), "Uniform carbon-covered titania and its photocatalytic property", J. Mol. Catal. Chem., 236(1-2), 46-53. https://doi.org/10.1016/j.molcata.2005.04.028
  127. Lind, M.L., Ghosh, A.K., Jawor, A., Huang, X., Hou, W., Yang, Y. and Hoek, E.M.V. (2009), "Influence of Zeolite Crystal Size on Zeolite-Polyamide Thin Film Nanocomposite Membranes", Langmuir, 25(17), 10139-10145. https://doi.org/10.1021/la900938x
  128. Lind, M.L., Eumine Suk, D., Nguyen, T.-V. and Hoek, E.M.V. (2010), "Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance", Environ. Sci. Technol., 44(21), 8230-8235. https://doi.org/10.1021/es101569p
  129. Liu, H.-L. and Yang, T.C.-K. (2003), "Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and $TiO_{2}$ activated with ultraviolet light", Process Biochem., 39(4), 475-481. https://doi.org/10.1016/S0032-9592(03)00084-0
  130. Liu, S., Yu, J. and Jaroniec, M. (2011), "Anatase $TiO_{2}$ with dominant high-energy {001} facets: Synthesis, properties, and applications", Chem. Mater., 23(18), 4085-4093. https://doi.org/10.1021/cm200597m
  131. Liu, Y., Li, J., Qiu, X. and Burda, C. (2006), "Novel $tiO_{2}$ nanocatalysts for wastewater purification: Tapping energy from the sun", Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 54(8), 47-54.
  132. Livraghi, S., Votta, A., Paganini, M.C. and Giamello, E. (2005), "The nature of paramagnetic species in nitrogen doped $TiO_{2}$ active in visible light photocatalysis", Chem. Commun. Camb. Engl., (4), 498-500.
  133. Livraghi, S., Paganini, M.C., Giamello, E., Selloni, A., Di Valentin, C. and Pacchioni, G. (2006), "Origin of photoactivity of nitrogen-doped titanium dioxide under visible light", J. Am. Chem. Soc., 128(49), 15666-15671. https://doi.org/10.1021/ja064164c
  134. Lv, Y., Liu, H., Wang, Z., Liu, S., Hao, L., Sang, Y., Liu, D., Wang, J. and Boughton, R.I. (2009), "Silver nanoparticle-decorated porous ceramic composite for water treatment", J. Membr. Sci., 331(1-2), 50-56. https://doi.org/10.1016/j.memsci.2009.01.007
  135. Ma, N., Fan, X., Quan, X. and Zhang, Y. (2009a), "Ag-$TiO_{2}$/HAP/$Al_{2}O_{3}$ bioceramic composite membrane: Fabrication, characterization and bactericidal activity", J. Membr. Sci., 336(1-2), 109-117. https://doi.org/10.1016/j.memsci.2009.03.018
  136. Ma, N., Quan, X., Zhang, Y., Chen, S. and Zhao, H. (2009b), "Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped $TiO_{2}$ for water purification", J. Membr. Sci., 335(1-2), 58-67. https://doi.org/10.1016/j.memsci.2009.02.040
  137. Ma, H., Hsiao, B.S. and Chu, B. (2011), "Thin-film nanofibrous composite membranes containing cellulose or chitin barrier layers fabricated by ionic liquids", Polymer, 52(12), 2594-2599. https://doi.org/10.1016/j.polymer.2011.03.051
  138. Majumder, M. and Ajayan, P.M. (2010), "1.14-Carbon nanotube membranes: A new frontier in membrane science" (E. Drioli and L. Giorno Eds.), Comprehensive Membrane Science and Engineering, Elsevier, Oxford, UK, pp. 291-310. [online] http://www.sciencedirect.com/science/article/pii/B9780080932507000384 (Accessed April 30, 2014).
  139. Majumder, M., Zhan, X., Andrews, R. and Hinds, B.J. (2007), "Voltage gated carbon nanotube membranes", Langmuir, 23(16), 8624-8631. https://doi.org/10.1021/la700686k
  140. Mara, D.D. (2003), "Water, sanitation and hygiene for the health of developing nations", Public Health, 117(6), 452-456. https://doi.org/10.1016/S0033-3506(03)00143-4
  141. Mauter, M.S. and Elimelech, M. (2008), "Environmental applications of carbon-based nanomaterials", Environ. Sci. Technol., 42(16), 5843-5859. https://doi.org/10.1021/es8006904
  142. Mauter, M.S., Wang, Y., Okemgbo, K.C., Osuji, C.O., Giannelis, E.P. and Elimelech, M. (2011), "Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials", ACS Appl. Mater. Interfaces, 3(8), 2861-2868. https://doi.org/10.1021/am200522v
  143. Maximous, N., Nakhla, G., Wong, K. and Wan, W. (2010), "Optimization of $Al_{2}O_{3}$/PES membranes for wastewater filtration", Sep. Purif. Technol., 73(2), 294-301. https://doi.org/10.1016/j.seppur.2010.04.016
  144. Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M. and Colvin, V.L. (2007), "The effect of nanocrystalline magnetite size on arsenic removal", Sci. Technol. Adv. Mater., 8(1-2), 71-75. https://doi.org/10.1016/j.stam.2006.10.005
  145. Meierhofer, R. (2006), "Establishing solar water disinfection as a water treatment method at household level", Madag. Conserv. Dev., 1(1), 25-30. [online] http://www.ajol.info/index.php/mcd/article/viewFile/44036/27551 (Accessed December 15, 2013).
  146. Meyer, D.E., Wood, K., Bachas, L.G. and Bhattacharyya, D. (2004), "Degradation of chlorinated organics by membrane-immobilized nanosized metals", Environ. Prog., 23(3), 232-242. https://doi.org/10.1002/ep.10031
  147. Mitoraj, D., Janczyk, A., Strus, M., Kisch, H., Stochel, G., Heczko, P.B. and Macyk, W. (2007), "Visible light inactivation of bacteria and fungi by modified titanium dioxide", Photochem. Photobiol. Sci. Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol., 6(6), 642-648.
  148. Mohsen, M.S., Jaber, J.O. and Afonso, M.D. (2003), "Desalination of brackish water by nanofiltration and reverse osmosis", Desalination, 157(1-3), 167. https://doi.org/10.1016/S0011-9164(03)00397-7
  149. Molinari, R., Palmisano, L., Drioli, E. and Schiavello, M. (2002), "Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification", J. Membr. Sci., 206(1-2), 399-415. https://doi.org/10.1016/S0376-7388(01)00785-2
  150. Montgomery, M.A. and Elimelech, M. (2007), "Water and sanitation in developing countries: Including health in the equation", Environ. Sci. Technol., 41(1), 17-24. https://doi.org/10.1021/es072435t
  151. Moore, M., Gould, P. and Keary, B.S. (2003), "Global urbanization and impact on health", Int. J. Hyg. Environ. Health, 206(4-5), 269-278. https://doi.org/10.1078/1438-4639-00223
  152. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramirez, J.T. and Yacaman, M.J. (2005), "The bactericidal effect of silver nanoparticles", Nanotechnology, 16(10), 2346-2353. https://doi.org/10.1088/0957-4484/16/10/059
  153. Mostafavi, S.T., Mehrnia, M.R. and Rashidi, A.M. (2009), "Preparation of nanofilter from carbon nanotubes for application in virus removal from water", Desalination, 238(1-3), 271-280. https://doi.org/10.1016/j.desal.2008.02.018
  154. Mulder, K., Hagens, N. and Fisher, B. (2010), "Burning water: A comparative analysis of the energy return on water invested", Ambio, 39(1), 30-39. https://doi.org/10.1007/s13280-009-0003-x
  155. Mulder, M. (1994), "The use of membrane processes in environmental problems. An introduction", (J.G. Crespo and K.W. Boddeker Eds.), Membrane Processes in Separation and Purification, Springer, pp. 229-262.
  156. Murad, A.A., Nuaimi, H. and Hammadi, M. (2007), "Comprehensive assessment of water resources in the United Arab Emirates (UAE)", Water Resour. Manag., 21(9), 1449-1463. https://doi.org/10.1007/s11269-006-9093-4
  157. Murakami, N., Kurihara, Y., Tsubota, T. and Ohno, T. (2009), "Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol", J. Phys. Chem. C, 113(8), 3062-3069. https://doi.org/10.1021/jp809104t
  158. Nednoor, P., Chopra, N., Gavalas, V., Bachas, L.G. and Hinds, B.J. (2005), "Reversible biochemical switching of ionic transport through aligned carbon nanotube membranes", Chem. Mater., 17(14), 3595-3599. https://doi.org/10.1021/cm047844s
  159. Nepal, D., Balasubramanian, S., Simonian, A.L. and Davis, V.A. (2008), "Strong antimicrobial coatings: Single-walled carbon nanotubes armored with biopolymers", Nano Lett., 8(7), 1896-1901. https://doi.org/10.1021/nl080522t
  160. Ni, M., Leung, M.K.H., Leung, D.Y.C. and Sumathy, K. (2007), "A review and recent developments in photocatalytic water-splitting using for hydrogen production", Renew. Sustain. Energy Rev., 11(3), 401-425. https://doi.org/10.1016/j.rser.2005.01.009
  161. Noworyta, K. and Augustynski, J. (2004), "Spectral photoresponses of carbon-doped $TiO_{2}$ film electrodes", Electrochem. Solid-State Lett., 7(6), E31-E33. https://doi.org/10.1149/1.1695536
  162. Obare, S.O. and Meyer, G.J. (2004), "Nanostructured materials for environmental remediation of organic contaminants in water", J. Environ. Sci. Health Part - Toxic Hazardous Subst. Environ. Eng., 39(10), 2549-2582. https://doi.org/10.1081/ESE-200027010
  163. Ohno, T., Mitsui, T. and Matsumura, M. (2003), "Photocatalytic activity of S-doped $TiO_{2}$ photocatalyst under visible light", Chem. Lett., 32(4), 364-365. https://doi.org/10.1246/cl.2003.364
  164. Ottaviani, M.F., Favuzza, P., Bigazzi, M., Turro, N.J., Jockusch, S. and Tomalia, D.A. (2000), "A TEM and EPR investigation of the competitive binding of uranyl ions to starburst dendrimers and liposomes: Potential use of dendrimers as uranyl ion sponges", Langmuir, 16(19), 7368-7372. https://doi.org/10.1021/la000355w
  165. Ozaki, H. (2004), "Rejection of micropollutants by membrane filtration", Regional Symposium on Membrane Science and Technology, Johor Bahru, Johor, Malaysia, April. [online] http://eprints.utm.my/1067/ (Accessed November 12, 2013).
  166. Page, K., Palgrave, R.G., Parkin, I.P., Wilson, M., Savin, S.L.P. and Chadwick, A.V. (2007), "Titania and silver?titania composite films on glass-potent antimicrobial coatings", J. Mater. Chem., 17(1), 95-104. https://doi.org/10.1039/b611740f
  167. Pal, S., Tak, Y.K. and Song, J.M. (2007), "Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli", Appl. Environ. Microbiol., 73(6), 1712-1720. https://doi.org/10.1128/AEM.02218-06
  168. Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T.J. and Zboril, R. (2006), "Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity", J. Phys. Chem. B, 110(33), 16248-16253. https://doi.org/10.1021/jp063826h
  169. Parmar, A. (2003), "Health and clean water: Rainwater retention helps green rajasthan", Women Environ. Int. Mag., 60-61, 14-16.
  170. Peltier, S., Cotte, M., Gatel, D., Herremans, L. and Cavard, J. (2003), "Nanofiltration: Improvements of water quality in a large distribution system", Water Sci. Technol. Water Supply, 3(1-2), 193-200.
  171. Pendergast, M.T.M., Nygaard, J.M., Ghosh, A.K. and Hoek, E.M.V. (2010), "Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction", Desalination, 261(3), 255-263. https://doi.org/10.1016/j.desal.2010.06.008
  172. Peter-Varbanets, M., Zurbrugg, C., Swartz, C. and Pronk, W. (2009), "Decentralized systems for potable water and the potential of membrane technology", Water Res., 43(2), 245-265. https://doi.org/10.1016/j.watres.2008.10.030
  173. Petrovic, M., Diaz, A., Ventura, F. and Barcelo, D. (2003), "Occurrence and removal of estrogenic shortchain ethoxy nonylphenolic compounds and their halogenated derivatives during drinking water production", Environ. Sci. Technol., 37(19), 4442-4448. https://doi.org/10.1021/es034139w
  174. Pint, C.L., Pheasant, S.T., Pasquali, M., Coulter, K.E., Schmidt, H.K. and Hauge, R.H. (2008), "Synthesis of high aspect-ratio carbon nanotube 'Flying Carpets' from nanostructured flake substrates", Nano Lett., 8(7), 1879-1883. https://doi.org/10.1021/nl0804295
  175. Prachi, P.G., Madathil, D. and Nair, A.N.B. (2013), "Nanotechnology in waste water treatment: A review", Int. J. ChemTech Res., 5(5), 2303-2308.
  176. Qin, J.-J., Oo, M.H. and Kekre, K.A. (2007), "Nanofiltration for recovering wastewater from a specific dyeing facility", Sep. Purif. Technol., 56(2), 199-203. https://doi.org/10.1016/j.seppur.2007.02.002
  177. Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H. and Gao, C. (2009), "Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes", J. Membr. Sci., 342(1-2), 165-172. https://doi.org/10.1016/j.memsci.2009.06.041
  178. Qu, X., Alvarez, P.J.J. and Li, Q. (2013), "Applications of nanotechnology in water and wastewater treatment", Water Res., 47(12), 3931-3946. https://doi.org/10.1016/j.watres.2012.09.058
  179. Rahaman, M.S., Vecitis, C.D. and Elimelech, M. (2012), "Electrochemical carbon-anotube filter performance toward virus removal and inactivation in the presence of natural organic matter", Environ. Sci. Technol., 46(3), 1556-1564. https://doi.org/10.1021/es203607d
  180. Rahimpour, A., Madaeni, S.S., Taheri, A.H. and Mansourpanah, Y. (2008), "Coupling $TiO_{2}$ nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes", J. Membr. Sci., 313(1-2), 158-169. https://doi.org/10.1016/j.memsci.2007.12.075
  181. Rickerby, D.G. and Morrison, M. (2007), "Nanotechnology and the environment: A European perspective", Sci. Technol. Adv. Mater., 8(1-2), 19-24. https://doi.org/10.1016/j.stam.2006.10.002
  182. Rincon, M.E., Trujillo-Camacho, M.E. and Cuentas-Gallegos, A.K. (2005), "Sol-gel titanium oxides sensitized by nanometric carbon blacks: Comparison with the optoelectronic and photocatalytic properties of physical mixtures", Catal. Today, 107-108, 606-611. https://doi.org/10.1016/j.cattod.2005.07.026
  183. Ritchie, S.M.C., Bachas, L.G., Olin, T., Sikdar, S.K. and Bhattacharyya, D. (1999), "Surface modification of silica- and cellulose-based microfiltration membranes with functional polyamino acids for heavy metal sorption", Langmuir, 15(19), 6346-6357. https://doi.org/10.1021/la9814438
  184. Ritchie, S.M.C., Kissick, K.E., Bachas, L.G., Sikdar, S.K., Parikh, C. and Bhattacharyya, D. (2001), "Polycysteine and other polyamino acid functionalized microfiltration membranes for heavy metal capture", Environ. Sci. Technol., 35(15), 3252-3258. https://doi.org/10.1021/es010617w
  185. Sadiq, R. and Rodriguez, M.J. (2004), "Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: A review", Sci. Total Environ., 321(1-3), 21-46. https://doi.org/10.1016/j.scitotenv.2003.05.001
  186. Sakthivel, S. and Kisch, H. (2003), "Daylight photocatalysis by carbon-modified titanium dioxide", Angew. Chem. Int. Ed., 42(40), 4908-4911. https://doi.org/10.1002/anie.200351577
  187. Savage, N. and Diallo, M.S. (2005), "Nanomaterials and water prification: Opportunities and callenges", J. Nanoparticle Res., 7(4-5), 331-342. https://doi.org/10.1007/s11051-005-7523-5
  188. Servos, M.R., Bennie, D.T., Burnison, B.K., Jurkovic, A., McInnis, R., Neheli, T., Schnell, A., Seto, P., Smyth, S.A. and Ternes, T.A. (2005), "Distribution of estrogens, 17$\beta$-estradiol and estrone, in Canadian municipal wastewater treatment plants", Sci. Total Environ., 336(1-3), 155-170. https://doi.org/10.1016/j.scitotenv.2004.05.025
  189. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M. (2008), "Science and technology for water purification in the coming decades", Nature, 452(7185), 301-310. https://doi.org/10.1038/nature06599
  190. Sharma, Y.C. Srivastava, V., Singh, V.K., Kaul, S.N. and Weng, C.H. (2009), "Nano-adsorbents for the removal of metallic pollutants from water and wastewater", Environ. Technol., 30(6), 583-609. https://doi.org/10.1080/09593330902838080
  191. Shephard, G.S., Stockenstrom, S. de Villiers, D., Engelbrecht, W.J. and Wessels, G.F.S. (2002), "Degradation of microcystin toxins in a falling film photocatalytic reactor with immobilized titanium dioxide catalyst", Water Res., 36(1), 140-146. https://doi.org/10.1016/S0043-1354(01)00213-5
  192. Shieh, K.-J., Li, M., Lee, Y.-H., Sheu, S.-D., Liu, Y.-T. and Wang, Y.-C. (2006), "Antibacterial performance of photocatalyst thin film fabricated by defection effect in visible light", Nanomedicine Nanotechnol. Biol. Med., 2(2), 121-126. https://doi.org/10.1016/j.nano.2006.04.001
  193. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P. and Dash, D. (2007), "Characterization of enhanced antibacterial effects of novel silver nanoparticles", Nanotechnology, 18(22), 225103. https://doi.org/10.1088/0957-4484/18/22/225103
  194. Sint, K., Wang, B. and Kral, P. (2008), "Selective ion passage through functionalized graphene nanopores", J. Am. Chem. Soc., 130(49), 16448-16449. https://doi.org/10.1021/ja804409f
  195. Sokmen, M., Candan, F. and Sumer, Z. (2001), "Disinfection of E. coli by the Ag-$TiO_{2}$/UV system: Lipidperoxidation", J. Photochem. Photobiol. Chem., 143(2-3), 241-244. https://doi.org/10.1016/S1010-6030(01)00497-X
  196. Son, W.K., Youk, J.H., Lee, T.S. and Park, W.H. (2004), "Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles", Macromol. Rapid Commun., 25(18), 1632-1637. https://doi.org/10.1002/marc.200400323
  197. Sondi, I. and Salopek-Sondi, B. (2004), "Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria", J. Colloid Interface Sci., 275(1), 177-182. https://doi.org/10.1016/j.jcis.2004.02.012
  198. Song, C. and Corry, B. (2009), "Intrinsic ion selectivity of narrow hydrophobic pores", J. Phys. Chem. B, 113(21), 7642-7649. https://doi.org/10.1021/jp810102u
  199. Spadaro, J.A., Berger, T.J., Barranco, S.D., Chapin, S.E. and Becker, R.O. (1974), "Antibacterial effects of silver electrodes with weak direct current", Antimicrob. Agents Chemother., 6(5), 637-642. https://doi.org/10.1128/AAC.6.5.637
  200. Srivastava, A., Srivastava, O.N., Talapatra, S., Vajtai, R. and Ajayan, P.M. (2004), "Carbon nanotube filters", Nat. Mater., 3(9), 610-614. https://doi.org/10.1038/nmat1192
  201. Stanton, B.W., Harris, J.J., Miller, M.D. and Bruening, M.L. (2003), "Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes", Langmuir, 19(17), 7038-7042. https://doi.org/10.1021/la034603a
  202. Strathmann, H. (2001), "Membrane separation processes: Current relevance and future opportunities", AIChE J., 47(5), 1077-1087. https://doi.org/10.1002/aic.690470514
  203. Striemer, C.C., Gaborski, T.R., McGrath, J.L. and Fauchet, P.M. (2007), "Charge- and size-based separation of macromolecules using ultrathin silicon membranes", Nature, 445(7129), 749-753. https://doi.org/10.1038/nature05532
  204. Subramanian, V., Wolf, E. and Kamat, P.V. (2001), "Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of $TiO_{2}$ films?", J. Phys. Chem. B, 105(46), 11439-11446. https://doi.org/10.1021/jp011118k
  205. Suffet, I.H., Ho, J., Chou, D., Khiari, D. and Mallevialle, J. (1995), "Taste-and- odor problems observed during drinking water treatment", (I.H. Suffet, J. Mallevialle, and E. Kawczynski Eds.), Advances in Taste-and-odor Treatment and Control, American Water Works Association.
  206. Suk, M.E. and Aluru, N.R. (2010), "Water transport through ultrathin graphene", J. Phys. Chem. Lett., 1(10), 1590-1594. https://doi.org/10.1021/jz100240r
  207. Sun, D., Meng, T.T., Loong, T.H. and Hwa, T.J. (2004), "Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtration membrane", Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 49(1), 103-110.
  208. Sunada, K., Watanabe, T. and Hashimoto, K. (2003), "Studies on photokilling of bacteria on $TiO_{2}$ thin film", J. Photochem. Photobiol. Chem., 156(1), 227-233. https://doi.org/10.1016/S1010-6030(02)00434-3
  209. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. and Bae, Y.C. (2004), "Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate $TiO_{2}$ under visible and UV light irradiation", J. Photochem. Photobiol. Chem., 163(1-2), 37-44. https://doi.org/10.1016/S1010-6030(03)00428-3
  210. Szewzyk, U., Szewzyk, R., Manz, W. and Schleifer, K.H. (2000), "Microbiological safety of drinking water", Annu. Rev. Microbiol., 54, 81-127. https://doi.org/10.1146/annurev.micro.54.1.81
  211. Tarabara, V.V. (2009), "Chapter 5 - Multifunctional nanomaterial-enabled membranes for water treatment", (N. Savage, M. Diallo, J. Duncan, A. Street, and R. Sustich Eds.), Nanotechnology Applications for Clean Water, Micro and Nano Technologies. William Andrew Publishing, Boston, MA, USA, pp. 59-75. [online] http://www.sciencedirect.com/science/article/pii/B9780815515784500147 (Accessed November 20, 2013).
  212. Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008), "Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities", J. Membr. Sci., 325(1), 58-68. https://doi.org/10.1016/j.memsci.2008.07.010
  213. Theron, J. and Cloete, T.E. (2002), "Emerging waterborne infections: contributing factors, agents, and detection tools", Crit. Rev. Microbiol., 28(1), 1-26. https://doi.org/10.1080/1040-840291046669
  214. Tiraferri, A., Vecitis, C.D. and Elimelech, M. (2011), "Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties", ACS Appl. Mater. Interfaces, 3(8), 2869-2877. https://doi.org/10.1021/am200536p
  215. Umebayashi, T., Yamaki, T., Itoh, H. and Asai, K. (2002), "Band gap narrowing of titanium dioxide by sulfur doping", Appl. Phys. Lett., 81(3), 454-456. https://doi.org/10.1063/1.1493647
  216. Upadhyayula, V.K.K., Deng, S., Mitchell, M.C., Smith, G.B., Nair, V.K. and Ghoshroy, S. (2008a), "Adsorption kinetics of Escherichia coli and Staphylococcus aureus on single-walled carbon nanotube aggregates", Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 58(1), 179-184. https://doi.org/10.2166/wst.2008.634
  217. Upadhyayula, V.K.K., Ghoshroy, S., Nair, V.S., Smith, G.B., Mitchell, M.C. and Deng, S. (2008b), "Single-walled carbon nanotubes as fluorescence biosensors for pathogen recognition in water systems", J. Nanotechnol., 2008. [online] http://www.hindawi.com/journals/jnt/2008/156358/abs/ (Accessed November 21, 2013).
  218. Upadhyayula, V.K.K., Deng, S., Mitchell, M.C. and Smith, G.B. (2009), "Application of carbon nanotube technology for removal of contaminants in drinking water: A review", Sci. Total Environ., 408(1), 1-13. https://doi.org/10.1016/j.scitotenv.2009.09.027
  219. Urase, T. and Kikuta, T. (2005), "Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process", Water Res., 39(7), 1289-1300. https://doi.org/10.1016/j.watres.2005.01.015
  220. Vamathevan, V., Amal, R., Beydoun, D., Low, G. and McEvoy, S. (2004), "Silver metallisation of titania particles: effects on photoactivity for the oxidation of organics", Chem. Eng. J., 98(1-2), 127-139. https://doi.org/10.1016/j.cej.2003.05.004
  221. Van der Bruggen, B. and Vandecasteele, C. (2002), "Distillation vs. membrane filtration: Overview of process evolutions in seawater desalination", Desalination, 143(3), 207-218. https://doi.org/10.1016/S0011-9164(02)00259-X
  222. Van der Bruggen, B. and Vandecasteele, C. (2003), "Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry", Environ. Pollut., 122(3), 435-445. https://doi.org/10.1016/S0269-7491(02)00308-1
  223. Vaseashta, A., Vaclavikova, M., Vaseashta, S., Gallios, G., Roy, P. and Pummakarnchana, O. (2007), "Nanostructures in environmental pollution detection, monitoring, and remediation", Sci. Technol. Adv. Mater., 8(1-2), 47-59. https://doi.org/10.1016/j.stam.2006.11.003
  224. Vecitis, C.D., Zodrow, K.R., Kang, S. and Elimelech, M. (2010), "Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon nanotubes", ACS Nano, 4(9), 5471-5479. https://doi.org/10.1021/nn101558x
  225. Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D. and Elimelech, M. (2011), "Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation", Environ. Sci. Technol., 45(8), 3672-3679. https://doi.org/10.1021/es2000062
  226. Venkatachalam, K., Arzuaga, X., Chopra, N., Gavalas, V.G., Xu, J., Bhattacharyya, D., Henning, B. and Bachas, L.G. (2008), "Reductive dechlorination of 3,3',4,4'-tetrachlorobiphenyl (PCB77) using palladium or palladium/iron nanoparticles and assessment of the reduction in toxic potency in vascular endothelial cells", J. Hazard. Mater., 159(2-3), 483-491. https://doi.org/10.1016/j.jhazmat.2008.02.109
  227. Verweij, H., Schillo, M.C. and Li, J. (2007), "Fast mass transport through carbon nanotube membranes", Small Weinh. Bergstr. Ger., 3(12), 1996-2004. https://doi.org/10.1002/smll.200700368
  228. Vieno, N., Tuhkanen, T. and Kronberg, L. (2006), "Removal of pharmaceuticals in drinking water treatment: Effect of chemical coagulation", Environ. Technol., 27(2), 183-192. https://doi.org/10.1080/09593332708618632
  229. Vimala, K., Samba Sivudu, K., Murali Mohan, Y., Sreedhar, B. and Mohana Raju, K. (2009), "Controlled silver nanoparticles synthesis in semi-hydrogel networks of poly(acrylamide) and carbohydrates: A rational methodology for antibacterial application", Carbohydr. Polym., 75(3), 463-471. https://doi.org/10.1016/j.carbpol.2008.08.009
  230. Vorosmarty, C.J., Green, P., Salisbury, J. and Lammers, R.B. (2000), "Global water resources: Vulnerability from climate change and population growth", Science, 289(5477), 284-288. https://doi.org/10.1126/science.289.5477.284
  231. Walha, K., Amar, R.B., Firdaous, L., Quemeneur, F. and Jaouen, P. (2007), "Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: Performance and cost comparison", Desalination, 207(1-3), 95-106. https://doi.org/10.1016/j.desal.2006.03.583
  232. Wang, H. and Lewis, J.P. (2005), "Effects of dopant states on photoactivity in carbon-doped $TiO_{2}$", J. Phys. Condens. Matter, 17(21), L209. https://doi.org/10.1088/0953-8984/17/21/L01
  233. Westerhoff, P., Yoon, Y., Snyder, S. and Wert, E. (2005), "Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes", Environ. Sci. Technol., 39(17), 6649-6663. https://doi.org/10.1021/es0484799
  234. Wheida, E. and Verhoeven, R. (2007), "An alternative solution of the water shortage problem in Libya", Water Resour. Manag., 21(6), 961-982. https://doi.org/10.1007/s11269-006-9067-6
  235. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. and Bruinink, A. (2007), "The degree and kind of agglomeration affect carbon nanotube cytotoxicity", Toxicol. Lett., 168(2), 121-131. https://doi.org/10.1016/j.toxlet.2006.08.019
  236. Wong, M.-S., Chu, W.-C., Sun, D.-S., Huang, H.-S., Chen, J.-H., Tsai, P.-J., Lin, N.T., Yu, M.S., Hsu, S.F., Wang, S.L. and Chang, H.H. (2006), "Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens", Appl. Environ. Microbiol., 72(9), 6111-6116. https://doi.org/10.1128/AEM.02580-05
  237. Wu, L. and Ritchie, S.M.C. (2006), "Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles", Chemosphere, 63(2), 285-292. https://doi.org/10.1016/j.chemosphere.2005.07.021
  238. Wu, L. and Ritchie, S.M.C. (2008), "Enhanced dechlorination of trichloroethylene by membrane-supported Pd-coated iron nanoparticles", Environ. Prog., 27(2), 218-224. https://doi.org/10.1002/ep.10277
  239. Wu, L.F., Shamsuzzoha, M. and Ritchie, S.M.C. (2005), "Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water", J. Nanoparticle Res., 7(4-5), 469-476. https://doi.org/10.1007/s11051-005-4271-5
  240. Wu, G., Gan, S., Cui, L. and Xu, Y. (2008), "Preparation and characterization of PES/$TiO_{2}$ composite membranes", Appl. Surf. Sci., 254(21), 7080-7086. https://doi.org/10.1016/j.apsusc.2008.05.221
  241. Xiu, Z.-M., Ma, J. and Alvarez, P.J.J. (2011), "Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions", Environ. Sci. Technol., 45(20), 9003-9008. https://doi.org/10.1021/es201918f
  242. Xiu, Z., Zhang, Q., Puppala, H.L., Colvin, V.L. and Alvarez, P.J.J. (2012), "Negligible particle-specific antibacterial activity of silver nanoparticles", Nano Lett., 12(8), 4271-4275. https://doi.org/10.1021/nl301934w
  243. Xu, J. and Bhattacharyya, D. (2005), "Membrane-based bimetallic nanoparticles for environmental remediation: Synthesis and reactive properties", Environ. Prog., 24(4), 358-366. https://doi.org/10.1002/ep.10106
  244. Xu, J. and Bhattacharyya, D. (2007), "Fe/Pd nanoparticle immobilization in microfiltration membrane pores: Synthesis, characterization, and application in the dechlorination of polychlorinated biphenyls", Ind. Eng. Chem. Res., 46(8), 2348-2359. https://doi.org/10.1021/ie0611498
  245. Xu, J. and Bhattacharyya, D. (2008), "Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature", J. Phys. Chem. C, 112(25), 9133-9144. https://doi.org/10.1021/jp7097262
  246. Xu, J., Dozier, A. and Bhattacharyya, D. (2005), "Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds", J. Nanoparticle Res., 7(4-5), 449-467. https://doi.org/10.1007/s11051-005-4273-3
  247. Xu, J., Bachas, L. and Bhattacharyya, D. (2009), "Chapter 22 - Synthesis of nanostructured bimetallic particles in polyligand-functionalized membranes for remediation applications", (N. Savage, M. Diallo, J. Duncan, A. Street, and R. Sustich Eds.), Nanotechnology Applications for Clean Water, Micro and Nano Technologies, William Andrew Publishing, Boston, MA, USA, pp. 311-335. [online] http://www.sciencedirect.com/science/article/pii/B9780815515784500317 (Accessed November 20, 2013).
  248. Yamamoto, T., Yamashita, F., Tanaka, I., Matsubara, E. and Muramatsu, A. (2004), "Electronic states of sulfur doped $TiO_{2}$ by first principles calculations", Mater. Trans., 45(7), 1987-1990. https://doi.org/10.2320/matertrans.45.1987
  249. Yamanaka, M., Hara, K. and Kudo, J. (2005), "Bactericidal actions of a silver ion solution on escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis", Appl. Environ. Microbiol., 71(11), 7589-7593. https://doi.org/10.1128/AEM.71.11.7589-7593.2005
  250. Yang, S. and Gao, L. (2004), "New method to prepare nitrogen-doped titanium dioxide and its photocatalytic activities irradiated by visible light", J. Am. Ceram. Soc., 87(9), 1803-1805. https://doi.org/10.1111/j.1551-2916.2004.01803.x
  251. Yang, G.C.C. and Li, C.-J. (2006), "Preparation of tubular $TiO_{2}$/$Al_{2}O_{3}$ composite membranes and their performance in electrofiltration of oxide-CMP wastewater", Desalination, 200(1-3), 74-76. https://doi.org/10.1016/j.desal.2006.03.247
  252. Yang, G.C.C. and Tsai, C.-M. (2008), "Preparation of carbon fibers/carbon/alumina tubular composite membranes and their applications in treating Cu-CMP wastewater by a novel electrochemical process", J. Membr. Sci., 321(2), 232-239. https://doi.org/10.1016/j.memsci.2008.04.060
  253. Yang, Y., Zhang, H., Wang, P., Zheng, Q. and Li, J. (2007), "The influence of nano-sized $TiO_{2}$ fillers on the morphologies and properties of PSF UF membrane", J. Membr. Sci., 288(1-2), 231-238. https://doi.org/10.1016/j.memsci.2006.11.019
  254. Yao, Y., Li, G., Gray, K.A. and Lueptow, R.M. (2008), "Single-walled carbon nanotube-facilitated dispersion of particulate $TiO_{2}$ on ZrO2 ceramic membrane filters", Langmuir, 24(14), 7072-7075. https://doi.org/10.1021/la801202d
  255. Yoon, Y., Westerhoff, P., Yoon, J. and Snyder, S. (2004), "Removal of 17$\beta$ Estradiol and Fluoranthene by Nanofiltration and Ultrafiltration", J. Environ. Eng., 130(12), 1460-1467. https://doi.org/10.1061/(ASCE)0733-9372(2004)130:12(1460)
  256. Yoon, Y., Westerhoff, P., Snyder, S.A. and Wert, E.C. (2006), "Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products", J. Membr. Sci., 270(1-2), 88-100. https://doi.org/10.1016/j.memsci.2005.06.045
  257. Yu, J.C., Yu, J.G., Ho, W.K., Jiang, Z.T. and Zhang, L.Z. (2002), "Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline $TiO_{2}$ powders", Chem. Mater., 14(9), 3808-3816. https://doi.org/10.1021/cm020027c
  258. Yu, D.-G., Teng, M.-Y., Chou, W.-L. and Yang, M.-C. (2003), "Characterization and inhibitory effect of antibacterial PAN-based hollow fiber loaded with silver nitrate", J. Membr. Sci., 225(1-2), 115-123. https://doi.org/10.1016/j.memsci.2003.08.010
  259. Zan, L., Fa, W., Peng, T. and Gong, Z. (2007), "Photocatalysis effect of nanometer $TiO_{2}$ and $TiO_{2}$-coated ceramic plate on Hepatitis B virus", J. Photochem. Photobiol. B, 86(2), 165-169. https://doi.org/10.1016/j.jphotobiol.2006.09.002
  260. Zhang, W. and DiGiano, F.A. (2002), "Comparison of bacterial regrowth in distribution systems using free chlorine and chloramine: a statistical study of causative factors", Water Res., 36(6), 1469-1482. https://doi.org/10.1016/S0043-1354(01)00361-X
  261. Zhang, X., Zhou, M. and Lei, L. (2005), "Preparation of an Ag-$TiO_{2}$ photocatalyst coated on activated carbon by MOCVD", Mater. Chem. Phys., 91(1), 73-79. https://doi.org/10.1016/j.matchemphys.2004.10.058
  262. Zhang, Q., Fan, Y. and Xu, N. (2009), "Effect of the surface properties on filtration performance of $Al_{2}O_{3}$-$TiO_{2}$ composite membrane", Sep. Purif. Technol., 66(2), 306-312. https://doi.org/10.1016/j.seppur.2008.12.010
  263. Zhao, G. and Stevens Jr. S.E. (1998), "Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion", Biometals, 11(1), 27-32. https://doi.org/10.1023/A:1009253223055
  264. Zhu, Y., Ran, T., Li, Y., Guo, J. and Li, W. (2006), "Dependence of the cytotoxicity of multi-walled carbon nanotubes on the culture medium", Nanotechnology, 17(18), 4668-4674. https://doi.org/10.1088/0957-4484/17/18/024
  265. Zodrow, K., Brunet, L., Mahendra, S., Li, D., Zhang, A., Li, Q. and Alvarez, P.J.J. (2009), "Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal", Water Res., 43(3), 715-723. https://doi.org/10.1016/j.watres.2008.11.014
  266. Zuo, G., Shen, R., Ma, S. and Guo, W. (2010), "Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel", ACS Nano, 4(1), 205-210. https://doi.org/10.1021/nn901334w

Cited by

  1. Silver nanoparticles supported on polyethylene glycol/cellulose acetate ultrafiltration membranes: preparation and characterization of composite vol.24, pp.11, 2017, https://doi.org/10.1007/s10570-017-1471-y
  2. Membrane materials for water purification: design, development, and application vol.2, pp.1, 2016, https://doi.org/10.1039/C5EW00159E
  3. Visible Light-Induced Photoeletrochemical and Antimicrobial Properties of Hierarchical CuBi2O4by Facile Hydrothermal Synthesis vol.1, pp.8, 2016, https://doi.org/10.1002/slct.201600164
  4. Anti-biofilm AgNP-polyaniline-polysulfone composite membrane activated by low intensity direct/alternating current vol.4, pp.10, 2014, https://doi.org/10.1039/c8ew00259b
  5. Highly Efficient Antimicrobial Activity of Cu x Fe y O z Nanoparticles against Important Human Pathogens vol.10, pp.11, 2014, https://doi.org/10.3390/nano10112294