DOI QR코드

DOI QR Code

Advances in electrodeionization technology for ionic separation - A review

  • Khoiruddin, Khoiruddin (Department of Chemical Engineering, ITB) ;
  • Hakim, A.N. (Department of Chemical Engineering, ITB) ;
  • Wenten, I.G. (Department of Chemical Engineering, ITB)
  • 투고 : 2013.12.31
  • 심사 : 2014.03.18
  • 발행 : 2014.04.25

초록

Electrodeionization (EDI), which combines electrodialysis (ED) and conventional ion-exchange (IX), is a mature process which has been applied since more than twenty years on commercial use for the production of ultrapure water (UPW). Eliminating chemical regeneration is the main reason for its commercial success. The increase in acceptance of EDI technology has led to an installation of very large plant as the commercial state of the art that produces $1,500m^3/h$ of water for high pressure steam boiler. More recently, EDI system has found a number of new interesting applications in wastewater treatment, biotechnology industry, and other potential field. Along with further growth and wider applications, the development of stack construction and configuration are also become a concern. In this paper, the principle of EDI process is described and its recent developments, commercial scale, and various applications are pointed out.

키워드

참고문헌

  1. Arora, M.B., Hestekin, J.A., Snyder, S.W., Martin, E.J.S., Lin, Y.J., Donnelly, M.I. and Millard, C.S. (2007), "The separative bioreactor: A continuous separation process for the simultaneous production and direct capture of organic acids", Separ. Sci. Technol., 42(11), 2519-2538. https://doi.org/10.1080/01496390701477238
  2. Basta, K., Aliane, A., Lounis, A., Sandeaux, R., Sandeaux, J. and Gavach, C. (1998), "Electroextraction of $Pb^{2+}$ ions from diluted solutions by a process combining ion-exchange textiles and membranes", Desalination, 120(3), 175-184. https://doi.org/10.1016/S0011-9164(98)00216-1
  3. Beattie, D. (2001), "Using RO/CEDI to meet USP 24 on chloraminated feed water", The Ultrapure Water Expo Technical Program, Philadelphia, PA, USA, April.
  4. Bi, J., Peng, C., Xu, H. and Ahmed, A.S. (2011), "Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization", Desal. Water Treat., 34(1-3), 394-401. https://doi.org/10.5004/dwt.2011.2891
  5. Bouhidel, K.E. and Lakehal, A. (2006), "Influence of voltage and flow rate on electrodeionization (EDI) process efficiency", Desalination, 193(1-3), 411-421. https://doi.org/10.1016/j.desal.2005.08.027
  6. Danielsson, C.O., Dahlkild, A., Velin, A. and Behm, M. (2009), "A model for the enhanced water dissociation on monopolar membranes", Electro. Acta, 54(11), 2983-2991. https://doi.org/10.1016/j.electacta.2008.12.025
  7. Decker, R. (2010), "An introduction to electrodeionization treatment technology", Ultrapure Water, 27(6), 33-35.
  8. Dejean, E., Sandeaux, J., Sandeaux, R. and Gavach, C. (1998), "Water demineralization by electrodeionization with ion-exchange textiles. Comparison with conventional electrodialysis", Separ. Sci. Technol., 33(6), 801-818. https://doi.org/10.1080/01496399808544877
  9. Dey, A. (2005), "SWEDI: A More Forgiving Electrodeionization Technology With Higher Feed Water Hardness Tolerance", Water Condition. Purif., June, 32-40.
  10. Dey, A. and Tate, J. (2005a), "Part 1: A review of spiral-wound electrodeionization technology", Ultrapure Water, 22(5), 20-29.
  11. Dey, A. and Tate, J. (2005b), "Part 2: A comparison between spiral-wound and plate-and-frame EDI technologies", Ultrapure Water, 22(6), 47-49+51-52.
  12. DiMascio, F. and Ganzi, G.C. (1999), "Electrodeionization apparatus and method", US Patent: 5,858,191.
  13. DiMascio, F., Wood, J. and Fenton, J.M. (1998), "Continuous electrodeionization: production of high-purity water without regeneration chemicals", Electro. Soc. Interf., 7(3), 26-29.
  14. DiMascio, F., Jha, A., Ganzi, G.C. and Wilkins, F. (2003), "Electrodeionization apparatus and method", US Patent: 6,514,398.
  15. Du, J., Lorenz, N., Beitle, R.R. and Hestekin, J.A. (2012), "Application of wafer-enhanced electrodeionization in a continuous fermentation process to produce butyric acid with clostridium tyrobutyricum", Separ. Sci. Technol., 47(1), 43-51. https://doi.org/10.1080/01496395.2011.618170
  16. Eliseeva, T.V., Shaposhnik, V.A., Krisilova, E.V. and Bukhovets, A.E. (2009), "Transport of basic amino acids through the ion-exchange membranes and their recovery by electrodialysis", Desalination, 241(1-3), 86-90. https://doi.org/10.1016/j.desal.2008.02.030
  17. Elleuch, M.B.C., Amor, M.B. and Pourcelly, G. (2006), "Phosphoric acid purification by a membrane process: Electrodeionization on ion-exchange textiles", Separ. Purif. Technol., 51(3), 285-290. https://doi.org/10.1016/j.seppur.2006.02.009
  18. Ervan, Y. and Wenten, I.G. (2002), "Study on the influence of applied voltage and feed concentration on the performance of electrodeionization", Songklanakarin J. Sci. Technol., 24, 955-963.
  19. Fedorenko, V.I. (2003), "Ultrapure water production using continuous electrodeionization", Pharma. Chem. J., 37(3), 157-160. https://doi.org/10.1023/A:1024598900912
  20. Fedorenko, V.I. (2004), "Ultrapure water production by continuous electrodeionization method: technology and economy", Pharma. Chem. J., 38(1), 35-40. https://doi.org/10.1023/B:PHAC.0000027643.24808.81
  21. Fei, Z., Wang, J., Chen, W. and Fan, G. (2012), "Degradation of anion exchange membrane and its influences on water decomposition in electrodeionization process", Huagong Xuebao/CIESC J., 63(11), 3560-3566.
  22. Feng, X., Gao, J.S. and Wu, Z.C. (2008), "Removal of copper ions from electroplating rinse water using electrodeionization", J. Zhejiang Univ.: Sci. A, 9(9), 1283-1287. https://doi.org/10.1631/jzus.A0820166
  23. Feng, D.J., Guan, S. and Zhang, J.M. (2010), "Influence of ion exchange resin on performance of layered-bed EDI process", J. Tianjin Polytech. Univ., 29(6), 9-12.
  24. Franzreb, M. (2006), "Device for magnetically controlled electrodeionization", US Patent: 6,991,716.
  25. Fu, L. and Wang, J.Y. (2008), "Recent research progress in electrodeionization process and its application", Xiandai Huagong/Modern Chem. Ind., 28(7), 16-21+23.
  26. Fulde, T. (2004), "Part 2: Implementation of a high-purity water system in a 300-mm fab", Ultrapure Water, 21(9), 33-37.
  27. Ganzi, G.C., Egozy, Y., Giuffrida, A.J. and Jha, A.D. (1987), "High purity water by electrodeionisation: Performance of the Ionpure (TM) continuous deionisation system", Ultrapure Water, 4(3), 43-50.
  28. Ganzi, G.C., Wood, J.H. and Griffin, C.S. (1992), "Water purification and recycling using the CDI process", Environ. Prog., 11(1), 49-53. https://doi.org/10.1002/ep.670110117
  29. Ganzi, G.C., Walkins, F. and Giuffrida, A.J. (2001), "Continuous electrodeionization apparatus and method", US Patent: 6,312,577.
  30. Garcia, M.L. and Lehtinen, M. (2010), "Dow TM EDI modules perform well at bioenergy combines in Scandinavia", Desal. Water Treat., 14, 127-134. https://doi.org/10.5004/dwt.2010.1111
  31. Gayathri, R. and Kumar, P.S. (2010), "Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange", Brazilian J. Chem. Eng., 27(1), 71-78. https://doi.org/10.1590/S0104-66322010000100006
  32. Gebicke, W., Armonies, B. and Eckert, B. (2003), "New approaches in high-purity water treatment - 5 years of operating experience with EDI", Ultrapure Water, 20(3), 25-30.
  33. Gifford, J. and Atnoor, D. (2000), "An innovative approach to continuous electrodeionisation module and system design for power applications", The International Water Conference, Pittsburg, PA, USA, October.
  34. Grabowski, A., Zhang, G., Strathmann, H. and Eigenberger, G. (2006), "The production of high purity water by continuous electrodeionization with bipolar membranes: Influence of the anion-exchange membrane permselectivity", J. Membr. Sci., 281, 297-306. https://doi.org/10.1016/j.memsci.2006.03.044
  35. Grabowski, A., Zhang, G., Strathmann, H. and Eigenberger, G. (2008), "Production of high-purity water by continuous electrodeionization with bipolar membranes: Influence of concentrate and protection compartment", Separ. Purif. Technol., 60(1), 86-95. https://doi.org/10.1016/j.seppur.2007.07.052
  36. Grebenyuk, V., Grebenyuk, O., Sims, K.J., Carson, W.W., MacDonald, R.J. and Zhang, L. (2007), "Spiral electrodeionization device with flow distribution profiling", US Patent: 7,306,709.
  37. Harada, N., Otomo, T., Watabe, T., Ase, T., Takemura, T. and Sato, T. (2011), "Removal of viable bacteria and endotoxins by electro deionization (EDI)", Biocontrol Sci., 16(3), 109-115. https://doi.org/10.4265/bio.16.109
  38. Ho, C. and Wood, J. (2006), "Design, construction and operation of a 6,730 gpm RO/CEDI system for Con Edison's East River Repowering Project", The International Water Conference, Pittsburgh, PA, USA, October.
  39. Ho, T., Kurup, A., Davis, T. and Hestekin, J. (2010), "Wafer chemistry and properties for ion removal by wafer enhanced electrodeionization", Separ. Sci. Technol., 45(4), 433-446. https://doi.org/10.1080/01496390903526709
  40. Huang, C., Xu, T., Zhang, Y., Xue, Y. and Chen, G. (2007), "Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments", J. Membr. Sci., 288(1-2), 1-12. https://doi.org/10.1016/j.memsci.2006.11.026
  41. Inoue, H., Tamura, M., Yoshida, S., Nakamura, H. and Yamanaka, K. (2007), "Ion exchanger", US Patent: 7,173,066.
  42. Jha, A.D. and Gifford, J.D. (2000). "CEDI: Selecting the appropriate configuration", Power Engineering (Barrington, Illinois), 104, 41-42, 44.
  43. Jones, C.P., Pierce, A. and Roberts, B.R. (2006), "The use of EDI technology to recycle HF acid wastes from scrubbers and thermal treatment units", Ultrapure Water, 23(5), 34-39.
  44. Kariduraganavar, M.Y., Nagarale, R.K., Kittur, A.A. and Kulkarni, S.S. (2006), "Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications", Desalination, 197(1-3), 225-246. https://doi.org/10.1016/j.desal.2006.01.019
  45. Keramati, N., Moheb, A. and Ehsani, M.R. (2010), "Effect of operating parameters on NaOH recovery from waste stream of merox tower using membrane systems: Electrodialysis and electrodeionization processes", Desalination, 259(1-3), 97-102. https://doi.org/10.1016/j.desal.2010.04.027
  46. Kumar, M., Khan, M.A., Al-Othman, Z.A. and Choong, T.S.Y. (2013), "Recent developments in ion-exchange membranes and their applications in electrochemical processes for in situ ion substitutions, separation and water splitting", Separ. Purif. Rev., 42(3), 187-261. https://doi.org/10.1080/15422119.2012.690360
  47. Kurup, A.S., Ho, T. and Hestekin, J.A. (2009), "Simulation and optimal design of electrodeionization process: Separation of multicomponent electrolyte solution", Ind. Eng. Chem. Res., 48(20), 9268-9277. https://doi.org/10.1021/ie801906d
  48. Larchet, C., Zabolotsky, V.I., Pismenskaya, N., Nikonenko, V.V., Tskhay, A., Tastanov, K. and Pourcelly, G. (2008), "Comparison of different ED stack conceptions when applied for drinking water production from brackish waters", Desalination, 222(1-3), 489-496. https://doi.org/10.1016/j.desal.2007.02.067
  49. Lee, J.W., Yeon, K.H., Song, J.H. and Moon, S.H. (2007), "Characterization of electroregeneration and determination of optimal current density in continuous electrodeionization", Desalination, 207(1-3), 276-285. https://doi.org/10.1016/j.desal.2006.04.070
  50. Lee, H.J., Hong, M.K. and Moon, S.H. (2012), "A feasibility study on water softening by electrodeionization with the periodic polarity change", Desalination, 284, 221-227. https://doi.org/10.1016/j.desal.2011.09.001
  51. Lee, H.-J., Song, J.-H. and Moon, S.-H. (2013), "Comparison of electrodialysis reversal (EDR) and electrodeionization reversal (EDIR) for water softening", Desalination, 314, 43-49. https://doi.org/10.1016/j.desal.2012.12.028
  52. Li, Z., Hernon, B.P. and Bernitz, F.S. (1998), "Electrodeionization adds new dimension to IX, RO", Power, 142(4), 53-56.
  53. Li, Y.Q., Guan, S. and Tang, E.Q. (2009), "Study on thick cell EDI process for ultra pure water production", J. Tianjin Polytech. Univ., 28(6), 15-18.
  54. Li, F.U.Z., Zhang, M., Zhao, X., Hou, T. and Liu, L.I.J. (2010), "Removal of $Co^{2+}$ and $Sr^{2+}$ from a primary coolant by continuous electrodeionization packed with weak base anion exchange resin", Nuclear Technol., 172(1), 71-76. https://doi.org/10.13182/NT10-A10883
  55. Li, Q., Huang, C. and Xu, T. (2011), "Alcohol splitting for the production of methyl methoxyacetate: integration of ion-exchange with bipolar membrane electrodialysis", J. Membr. Sci., 367(1-2), 314-318. https://doi.org/10.1016/j.memsci.2010.11.021
  56. Li, W., Krantz, W.B., Cornelissen, E.R., Post, J.W., Verliefde, A.R.D. and Tang, C.Y. (2013), "A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management", Appl. Ener., 104, 592-602. https://doi.org/10.1016/j.apenergy.2012.11.064
  57. Liang, L.S. (2003), "Evolution in design of CEDI Systems", Ultrapure Water, 20(8), 13-17.
  58. Liang, L.S. and Wang, L. (2001), "Continuous electrodeionization processes for production of ultrapure water", The Semiconductor Pure Water and Chemicals Conference, Monterey, CA, USA, February- March.
  59. Liang, L.S., Jha, A., Arba, J. and Dupont, S. (2003), "Electrodeionization apparatus and method", US Patent: 6,649,037 B2
  60. Liang, L.S., Jha, A., Arba, J. and Dupont, S. (2004), "Electrodeionization apparatus and method", US Patent: 6,824,662 B2.
  61. Liu, F., Zhang, G., Zhang, H. and Mo, J. (2008a), "Performance evaluation of electrodeionization process based on ionic equilibrium with plate and frame modules", Desalination, 221(1-3), 425-432. https://doi.org/10.1016/j.desal.2007.01.102
  62. Liu, L., Li, F., Zhao, X. and Zhao, G. (2008b), "Low-level radioactive wastewater treatment by continuous electrodeionization", Qinghua Daxue Xuebao/J. Tsinghua Univ., 48(6), 1012-1014.
  63. Liu, H.R., Wei, J.F., Guan, S., Zhang, H. and Zhao, K.Y. (2011), "Study on EDI technology with ion-exchange fiber for ultra pure water production", J. Tianjin Polytech. Univ., 30(2), 19-22.
  64. Lounis, A., Setti, L., Djennane, A. and Melikchi, R. (2007), "Separation of molybdenum-uranium by a process combining ion exchange resin and membranes", J. Appl. Sci., 7(14), 1963-1967. https://doi.org/10.3923/jas.2007.1963.1967
  65. Lu, J., Wang, Y.X. and Zhu, J. (2010), "Numerical simulation of the electrodeionization (EDI) process accounting for water dissociation", Electro. Acta, 55(8), 2673-2686. https://doi.org/10.1016/j.electacta.2009.11.107
  66. Lu, H., Wang, J., Bu, S. and Fu, L. (2011), "Influence of resin particle size distribution on the performance of electrodeionization process for $Ni^{2+}$ removal from synthetic wastewate", Separ. Sci. Technol. 46(3), 404-408. https://doi.org/10.1080/01496395.2010.518197
  67. Matzan, E., Maitino, P. and Tate, J. (2001), "Deionization: cost reduction and operating results of an RO/EDI treatment system", Ultrapure Water, 18(8), 20-24.
  68. Meng, H., Peng, C., Song, S. and Deng, D. (2004), "Electro-regeneration mechanism of ion-exchange resins in electrodeionization", Surface Rev. Letters, 11(6), 599-605. https://doi.org/10.1142/S0218625X04006542
  69. Menzel, T. and Beusshausen, S. (2006), "Improvements of semiconductor water treatment using spiral-wound EDI", Ultrapure Water, 23(4), 31-35.
  70. Meyer, N., Parker, W.J. and Van Geel, P.J. (2000), "Treatment of nitrate contaminated water by electrodeionization", 2000 Annual Conference-Canadian Society for Civil Engineering, London, Ontario, Canada, June.
  71. Meyer, N., Parker, W.J., Van Geel, P.J. and Adiga, M. (2005a), "Development of an electrodeionization process for removal of nitrate from drinking water. Part 1: single-species testing", Desalination, 175(2), 153-165. https://doi.org/10.1016/j.desal.2004.07.051
  72. Meyer, N., Parker, W.J., Van Geel, P.J. and Adiga, M. (2005b), "Development of an electrodeionization process for removal of nitrate from drinking water. Part 2: multi-species testing", Desalination, 175(2), 167-177. https://doi.org/10.1016/j.desal.2004.07.052
  73. Mir, L. (2001), "High purity electrodeionization", US Patents: 6,254,753 B1.
  74. Mittal, D. and Nathan, V.J. (2010), "Use of unique fractional electrodeionization in power plant applications", Ultrapure Water, 27(6), 24-32.
  75. Nagarale, R.K., Gohil, G.S. and Shahi, V.K. (2006), "Recent developments on ion-exchange membranes and electro-membrane processes", Adv. Colloid Interf. Sci., 119(), 97-130. https://doi.org/10.1016/j.cis.2005.09.005
  76. Noh, B.I., Yoon, T.K. and Moon, B.H. (1996), "The mixed bed ion exchange performances at ultralow concentrations," Korean J. Chem. Eng., 13(2), 150-158. https://doi.org/10.1007/BF02705902
  77. Osawa, M. and Kato, O. (2002), "Electrodeionization apparatus and pure water producing apparatus", US Patent: 6,379,518.
  78. Park, J.S., Song, J.H., Yeon, K.H. and Moon, S.H. (2007), "Removal of hardness ions from tap water using electromembrane processes", Desalination, 202(1-3), 1-8. https://doi.org/10.1016/j.desal.2005.12.031
  79. Parker, R. (2011), "Electrodeionization Evaluation in A Semiconductor Fab Recycle System", Access: November 23, 2011. www.mcilvainecompany.com/Decision_Tree/subscriber/articles/Semiconductor_Electrodeionization.pdf
  80. Prato, T. and Gallagher, C. (2000), "Using EDI to meet the needs of pure water production", The International Water Conference, Pittsburgh, PA, USA, October.
  81. Riviello, J.M. and Siriraks, A. (2011), "Electrodeionization: applications of EDI devices in inorganic analysis", Ultrapure Water, 28(6), 10-14.
  82. Rychen, P., Alonso, S. and Alt, H.P. (1997). "High-purity water production with the latest modular electrodeionization technology", Ultrapure Water, 14, 40-47.
  83. Salem, E. (2000), "Areas to consider when selecting an EDI system", Ultrapure Water, 17(6), 72-76.
  84. Salem, K., Sandeaux, J., Molenat, Sandeaux, R. and Gavach, C. (1995), "Elimination of nitrate from drinking water by electrochemical membrane processes", Desalination, 101(2), 123-131. https://doi.org/10.1016/0011-9164(95)00015-T
  85. Sanz, J., Guerrero, L. and Roca, M. (2006), "Ultrapure water production by a continuous electrodeionization process (CEDI)", Produccion de agua de alta pureza: Electrodesionizacion en continuo (CEDI), 26(269), 48-63.
  86. Sato, S. (2010), "Apparatus for electrodeionization of water", US Patent: 7,666,288.
  87. Sato, S. and Takayuki, M. (2004), "Method and apparatus for electrodeionization of water", US Patent: 6,733,646 B2.
  88. Shinnei, Y. and Kakuda, M. (2001), "Process for producing deionized water by electrodeionization technique", US Patent: 6,248,226.
  89. Song, J.H., Yeon, K.H., Cho, J. and Moon, S.H. (2005), "Effects of the operating parameters on the reverse osmosis- electrodeionization performance in the production of high purity water", Korean J. Chem. Eng., 22(1), 108-114. https://doi.org/10.1007/BF02701471
  90. Song, J.H., Yeon, K.H. and Moon, S.H. (2007), "Effect of current density on ionic transport and water dissociation phenomena in a continuous electrodeionization (CEDI)", J. Membr. Sci., 291(1-2), 165-171. https://doi.org/10.1016/j.memsci.2007.01.004
  91. Souilah, O., Akretche, D.E. and Amara, M. (2004), "Water reuse of an industrial effluent by means of electrodeionisation", Desalination, 167(1-3), 49-54. https://doi.org/10.1016/j.desal.2004.06.112
  92. Spiegel, E.F., Thompson, P.M., Helden, D.J., Doan, H.V., Gaspar, D.J. and Zanapalidou, H. (1999), "Investigation of an electrodeionization system for the removal of low concentrations of ammonium ions", Desalination, 123, 85-92. https://doi.org/10.1016/S0011-9164(99)00062-4
  93. Spiegler, K.S. (1966), Principles of Desalination, Academic press, New York, 441.
  94. Strathmann, H. (2010), "Electrodialysis, a mature technology with a multitude of new applications", Desalination, 264(3), 268-288. https://doi.org/10.1016/j.desal.2010.04.069
  95. Taghdirian, H.R., Moheb, A. and Mehdipourghazi, M. (2010), "Selective separation of Ni(II)/Co(II) ions from dilute aqueous solutions using continuous electrodeionization in the presence of EDTA", J. Membr. Sci., 362(1-2), 68-75. https://doi.org/10.1016/j.memsci.2010.06.023
  96. Thate, S., Specogna, N. and Eigenberger, G. (1999), "Electrodeionization: a comparison of different EDI concepts used for the production of high-purity water", Ultrapure Water, 16(8), 42-56.
  97. Verbeek, H.M., Furst, L. and Neumeister, H. (1998), "Digital simulation of an electrodeionization process", Comput. Chem. Eng., 22(SUPPL.1), S913-S916. https://doi.org/10.1016/S0098-1354(98)00179-3
  98. Wang, J.Y. (2005), "Research progress and expectation of electrodeionization watertreatment technology", J. Tianjin Polytech. Univ., 24(5), 92-97.
  99. Wang, J.Y. and Wang, S.C. (2001), "High-purity water production by RO/EDI system", Huagong Xuebao/J. Chem. Ind. Eng. (China), 52(1), 15-16.
  100. Wang, J., Wang, S. and Jin, M. (2000), "A study of the electrodeionization process high-purity water production with a RO/EDI system", Desalination, 132(1-3), 349-352. https://doi.org/10.1016/S0011-9164(00)00171-5
  101. Wang, J., Wang, S. and Wang, Y. (2003), "High-purity water production by RO/EDI integrated membrane processes", Fluid - Particle Separ. J., 15(1), 31-35.
  102. Wang, J., Fan, G., Dong, H., Fei, Z., Chen, W. and Lu, H. (2011), "Recent patents review on electrodeionization", Rec. Patents Chem. Eng., 4(2), 183-198.
  103. Wen, R., Deng, S. and Zhang, Y. (2005), "The removal of silicon and boron from ultra-pure water by electrodeionization", Desalination, 181(1-3), 153-159. https://doi.org/10.1016/j.desal.2005.02.018
  104. Wenten, I.G., Khoiruddin, Arfianto, F. and Zudiharto (2013), "Bench scale electrodeionization for high pressure boiler feed water", Desalination, 314, 109-114. https://doi.org/10.1016/j.desal.2013.01.008
  105. Widiasa, I.N. and Wenten, I.G. (2007), "Combination of reverse osmosis and electrodeionization for simultaneous sugar recovery and salts removal from sugary wastewater", Reaktor, 11(2), 91-97.
  106. Widiasa, I.N., Sutrisna, P.D. and Wenten, I.G. (2004), "Performance of a novel electrodeionization technique during citric acid recovery", Separ. Purif. Technol., 39(1-2 SPEC. ISS.), 89-97. https://doi.org/10.1016/j.seppur.2003.12.020
  107. Willis, S. (2008), "Purer, greener water", Chem. Engineer, 804, 38-39.
  108. Wood, J. (2008), "Power generation: Continuous electrodeionisation for power plants", Filtr. Separ., 45(5), 17-19.
  109. Wood, J. and Gifford, J. (2002), "Improvements in continuous electrodeionization for power plant applications", The Industrial Water Conference, Orlando, FL, USA, December.
  110. Wood, J., Hirayama, J. and Satoh, S. (2000), "Hot water sanitization of continuous electrodeionization systems", Pharma. Eng., 20(6), 34-40.
  111. Wood, J., Westberg, E. and Blackbourn, D. (2003), "Field experience with a new CEDI module design", The International Water Conference, Pittsburgh, PA, USA, October.
  112. Wood, J., Westberg, E. and Blackbourn, D. (2004), "Field experience with an all-resin-filled CEDI module design", Ultrapure Water, 21(9), 27-32.
  113. Wood, J., Gifford, J., Arba, J. and Shaw, M. (2010), "Production of ultrapure water by continuous electrodeionization", Desalination, 250(3), 973-976. https://doi.org/10.1016/j.desal.2009.09.084
  114. www.dowwaterandprocess.com/products/edi/installs.htm, Access: July 21, 2009.
  115. www.enersave-group.com/2008/downloads/images/pdf/CSM%20Prj%20Cutsheet.pdf, Access: June, 2012.
  116. www.ges.co.il/files/GES_Power_Generation.pdf, Access: June, 2012.
  117. www.gewater.com/pdf/Case%20Studies_Cust/Americas/English/CS1055EN.pdf, Access: February 20, 2013.
  118. www.water.siemens.com/SiteCollectionDocuments/Product_Lines/Ionpure_Products/PEI%20NOV04.pdf, Access: July 24, 2009.
  119. Xing, Y., Chen, X., Yao, P. and Wang, D. (2009), "Continuous electrodeionization for removal and recovery of Cr(VI) from wastewater", Separ. Purif. Technol., 67(2), 123-126. https://doi.org/10.1016/j.seppur.2009.03.029
  120. Yeon, K.H. and Moon, S.H. (2003), "A study on removal of cobalt from a primary coolant by continuous electrodeionization with various conducting spacers", Separ. Sci. Technol., 38(10), 2347-2371. https://doi.org/10.1081/SS-120021628
  121. Yeon, K.H., Song, J.H. and Moon, S.H. (2004b), "Preparation and characterization of immobilized Ion exchange polyurethanes (IEPU) and their applications for continuous electrodeionization (CEDI)", Korean J. Chem. Eng. 21(4), 867-873. https://doi.org/10.1007/BF02705532
  122. Yeon, K.H., Song, J.H., Kim, J.B. and Moon, S.H. (2004a), "Preparation and characterization of UV-grafted ion-exchange textiles in continuous electrodeionization", J. Chem. Technol. Biotechnol., 79(12), 1395-1404. https://doi.org/10.1002/jctb.1141
  123. Yoshida, S., Kanazawa, N., Qiu, L., Umeda, M., Uchino, H., Fukuda, J., Aoyagi, M. and Watanabe, T. (2002), "Regeneration mechanism of ion exchange materials in electrodeionization system", Electrochemistry, 70(10), 784-788.
  124. Yu, P., Lin, J., Henry, M., Hestekin, J., Snyder, S.W. and Martin, E.J. (2006), "Single-stage separation and esterification of cation salt carboxylates using electrodeionization" US Patent: 7,141,154.

피인용 문헌

  1. Functionalized carbon nanotube (CNT) membrane: progress and challenges vol.7, pp.81, 2017, https://doi.org/10.1039/C7RA08570B
  2. Analysis of newly designed CDI cells by CFD and its performance comparison vol.7, pp.2, 2016, https://doi.org/10.12989/mwt.2016.7.2.115
  3. Reverse osmosis applications: Prospect and challenges vol.391, 2016, https://doi.org/10.1016/j.desal.2015.12.011
  4. Flue gas carbon capture using hollow fiber membrane diffuser-separator vol.285, 2018, https://doi.org/10.1088/1757-899X/285/1/012010
  5. Surface modification of ion-exchange membranes: Methods, characteristics, and performance vol.134, pp.48, 2017, https://doi.org/10.1002/app.45540
  6. Beverage dealcoholization processes: Past, present, and future vol.71, 2018, https://doi.org/10.1016/j.tifs.2017.10.018
  7. Mathematical Model for Numerical Simulation of Organic Compound Recovery Using Membrane Separation vol.41, pp.2, 2018, https://doi.org/10.1002/ceat.201700445
  8. Adsorptive separation of adipic acid from aqueous solutions by perlite or its composites by manganese or copper vol.5, pp.4, 2014, https://doi.org/10.12989/mwt.2014.5.4.295
  9. Ceramic membrane ozonator for soluble organics removal from produced water vol.285, 2018, https://doi.org/10.1088/1757-899X/285/1/012012
  10. Membrane separation for non-aqueous solution vol.285, 2018, https://doi.org/10.1088/1757-899X/285/1/012008
  11. Preparation and characterization of polysulfone/PEG heterogeneous ion exchange membrane for reverse electrodialysis (RED) vol.877, 2017, https://doi.org/10.1088/1742-6596/877/1/012075
  12. Heterogeneous structure and its effect on properties and electrochemical behavior of ion-exchange membrane vol.4, pp.2, 2017, https://doi.org/10.1088/2053-1591/aa5cd4
  13. Progress on Zeolite-membrane-aided Organic Acid Esterification vol.214, 2017, https://doi.org/10.1088/1757-899X/214/1/012012
  14. LTA zeolite membranes: current progress and challenges in pervaporation vol.7, pp.47, 2017, https://doi.org/10.1039/C7RA03341A
  15. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production vol.156, pp.2261-236X, 2018, https://doi.org/10.1051/matecconf/201815608008
  16. The effect of heterogeneity in ion-exchange membrane structure on Donnan Exclusion vol.1090, pp.1742-6596, 2018, https://doi.org/10.1088/1742-6596/1090/1/012045
  17. Metal Oxide based Antibacterial Membrane vol.395, pp.1757-899X, 2018, https://doi.org/10.1088/1757-899X/395/1/012021
  18. permeance in the application of CO2/N2 separation pp.1525-6111, 2018, https://doi.org/10.1080/03602559.2018.1520253
  19. Simulation of Nonporous Polymeric Membranes Using CFD for Bioethanol Purification vol.27, pp.3, 2018, https://doi.org/10.1002/mats.201700084
  20. Superhydrophobic membrane: progress in preparation and its separation properties vol.35, pp.2, 2019, https://doi.org/10.1515/revce-2017-0030
  21. ε-polylysine biopolymer for coagulation of clay suspensions vol.12, pp.5, 2014, https://doi.org/10.12989/gae.2017.12.5.753
  22. Combined ultrafiltration-electrodeionization technique for production of high purity water vol.75, pp.12, 2017, https://doi.org/10.2166/wst.2017.173
  23. Modified membrane with antibacterial properties vol.8, pp.5, 2017, https://doi.org/10.12989/mwt.2017.8.5.463
  24. Characterization of MK-40 Membrane Modified by Layers of Cation Exchange and Anion Exchange Polyelectrolytes vol.10, pp.2, 2014, https://doi.org/10.3390/membranes10020020
  25. Electrodeionization theory, mechanism and environmental applications. A review vol.18, pp.4, 2014, https://doi.org/10.1007/s10311-020-01006-9
  26. Ionic Separation in Electrodeionization System: Mass Transfer Mechanism and Factor Affecting Separation Performance vol.49, pp.4, 2014, https://doi.org/10.1080/15422119.2019.1608562
  27. Graphene Oxide-Based Nanofiltration for Hg Removal from Wastewater: A Mini Review vol.11, pp.4, 2021, https://doi.org/10.3390/membranes11040269
  28. A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis vol.13, pp.22, 2014, https://doi.org/10.3390/w13223241
  29. A review on recent advances in electrodeionization for various environmental applications vol.289, pp.None, 2022, https://doi.org/10.1016/j.chemosphere.2021.133223