SOME REMARKS ON NON-SYMPLECTIC AUTOMORPHISMS OF K3 SURFACES OVER A FIELD OF ODD CHARACTERISTIC

Junmyeong Jang

Abstract

In this paper, we present a simple proof of Corollary 3.3 in [5] using the fact that for a K3 surface of finite height over a field of odd characteristic, the height is a multiple of the non-symplectic order. Also we prove for a non-symplectic CM K3 surface defined over a number field, the Frobenius invariant of the reduction over a finite field is determined by the congruence class of residue characteristic modulo the non-symplectic order of the K3 surface.

1. Introduction

Let k be an algebraically closed field of odd characteristic p. Let W be the ring of Witt vectors of k and K be the fraction field of W. Assume X is a K3 surface over k. The second crystalline cohomology of $X, H_{c r i s}^{2}(X / W)$ is a free W-module of rank 22 equipped with a canonical Frobenius linear morphism

$$
\mathbf{F}: H_{c r i s}^{2}(X / W) \rightarrow H_{c r i s}^{2}(X / W) .
$$

Let $H_{c r i s}^{2}(X / K)=H_{c r i s}^{2}(X / W) \otimes K$ be the rational crystalline cohomology. If all the Newton slopes of F-isocrystal $\left(H_{c r i s}^{2}(X / K), F\right)$ are 1 , we say X is supersingular. If X is not supersingular, there exists an integer h between 1 and 10 such that the slopes of $H_{c r i s}^{2}(X / K)$ are $1-1 / h, 1,1+1 / h$ of length $h, 22-h, h$ respectively. In this case, we say X is of height h.

If X is of finite height h, the Dieudonné module of the formal Brauer group of X is

$$
\mathbb{D}\left(\widehat{B r} r_{X}\right)=W[F, V] /\left(F V=p, F=V^{h-1}\right) .
$$

Here $\mathbb{D}\left(\widehat{\operatorname{Br}}_{X}\right)$ is a free W-module of rank h equipped with a Frobenius linear operator F and a Frobenius-inverse linear operator V. The Dieudonné module

[^0]$\mathbb{D}\left(\widehat{\operatorname{Br}}_{X}\right)$ is isomorphic to $H^{2}\left(X, W \mathcal{O}_{X}\right)([1]) . H_{\text {cris }}^{2}(X / W)$ has an F-crystal decomposition according to the Newton slopes
$$
H_{c r i s}^{2}(X / W)=H_{c r i s}^{2}(X / W)_{[1-1 / h]} \oplus H_{c r i s}^{2}(X / W)_{[1]} \oplus H_{c r i s}^{2}(X / W)_{[1+1 / h]}
$$

Here

$$
H_{c r i s}^{2}(X / W)_{[1-1 / h]}=\mathbb{D}\left(\widehat{B r}_{X}\right)
$$

and

$$
H_{c r i s}^{2}(X / W)_{[1+1 / h]}=\operatorname{Hom}\left(H^{2}\left(X, W \mathcal{O}_{X}\right), W\left(p^{2}\right)\right)
$$

By the cup product pairing, $H_{c r i s}^{2}(X / W)_{[1-1 / h]}$ and $H_{c r i s}^{2}(X / W)_{[1+1 / h]}$ are isotropic and dual to each other. $H_{c r i s}^{2}(X / W)_{[1]}$ is unimodular. The discriminant of the \mathbb{Z}_{p}-lattice $H_{c r i s}^{2}(X / W)_{[1]}^{F=p}$ is $(-1)^{h+1}([10])$. The image of the cycle map

$$
N S(X) \otimes W \hookrightarrow H_{c r i s}^{2}(X / W)
$$

sits inside $H_{c r i s}^{2}(X / W)_{[1]}$. Therefore the Picard number of X, the rank of $N S(X)$ is at most $22-2 h$. Let $T_{\text {cris }}(X)$ be the orthogonal complement of the embedding $N S(X) \hookrightarrow H_{c r i s}^{2}(X / W)$. We call $T_{\text {cris }}(X)$ the crystalline transcendental lattice of X. By the above observation, we can see $H_{c r i s}^{2}(X / W)_{[1-1 / h]} \oplus$ $H_{c r i s}^{2}(X / W)_{[1+1 / h]}$ is a direct factor of $T_{\text {cris }}(X)$. From the exact sequence of sheaves on X

$$
0 \rightarrow W \mathcal{O}_{X} \xrightarrow{V} W \mathcal{O}_{X} \rightarrow \mathcal{O}_{X} \rightarrow 0
$$

we have a canonical morphism

$$
H_{c r i s}^{2}(X / W)_{[1-1 / h]}=\mathbb{D}\left(\widehat{B r}_{X}\right) \simeq H^{2}\left(X, W \mathcal{O}_{X}\right) \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right)
$$

Let

$$
\chi_{c r i s, X}: \text { Aut } X \rightarrow O\left(T_{c r i s}(X)\right)
$$

and

$$
\rho_{X}: \operatorname{Aut} X \rightarrow G l\left(H^{0}\left(X, \Omega_{X / k}^{2}\right)\right)
$$

be the representation of Aut X on the crystalline transcendental lattice and on global 2 forms. The images of $\chi_{c r i s, X}$ and ρ_{X} are finite and there is a canonical projection ([5])

$$
\operatorname{Im} \chi_{c r i s, X} \rightarrow \operatorname{Im} \rho_{X}
$$

If X is a supersingular K3 surface over k, the rank of $N S(X)$ is 22 ([2], [6]). The cycle map $N S(X) \otimes W \hookrightarrow H_{c r i s}^{2}(X)$ is an embedding of W-lattices of same rank and we have

$$
N S(X) \otimes W \subset H_{c r i s}^{2}(X / W) \subset N S(X)^{*} \otimes W
$$

The quotient $H_{c r i s}^{2}(X / W) /(N S(X) \otimes W)$ is a σ dimensional k-space for an integer σ between 1 and 10 . We say σ is the Artin-invariant of X. It is known that $N S(X)$ is completely determined by p and $\sigma([12])$. We denote the NeronSeveri lattice of a supersingular K3 surface of Artin invariant σ over a field of
characteristic p by $\Lambda_{p, \sigma}$. For a lattice L, let $d(L)$ be the discriminant of L. The discriminant $d\left(\Lambda_{p, \sigma}\right)$ is $-p^{2 \sigma}$. It is also known that there is a decomposition

$$
\Lambda_{p, \sigma} \otimes \mathbb{Z}_{p}=E_{0}(p) \oplus E_{1} .
$$

Here E_{0} and E_{1} are unimodular \mathbb{Z}_{p}-lattices of rank 2σ and $22-2 \sigma$ respectively. And $d\left(E_{0}\right)=(-1)^{\sigma} \delta$ and $d\left(E_{1}\right)=(-1)^{\sigma+1} \delta$, where δ is a non-square unit of \mathbb{Z}_{p}. Note that a unimodular \mathbb{Z}_{p}-lattice is uniquely determined up to isomorphism by the rank and the discriminant, square or non-square.

We denote the characteristic polynomial over an indeterminate T of a linear endomorphism L by $\varphi(L)$. When $\alpha \in$ Aut X is an automorphism of a K3 surface of $X, \varphi\left(\alpha^{*} \mid H_{c r i s}^{2}(X / W)\right)$ is a polynomial with integer coefficients ([4], 3.7.3). If X is of finite height, $\varphi\left(\chi_{c r i s, X}\right)$ is also an integral polynomial. An automorphism $\alpha \in$ Aut X is symplectic if $\rho_{X}(\alpha)=1$. An automorphism $\alpha \in$ Aut X is purely non-symplectic if α is of finite order and the order of α is equal to the order of $\rho_{X}(\alpha)$. For $\alpha \in$ Aut X, we say the order of $\rho_{X}(\alpha)$ is the non-symplectic order of α. Also, we call the order of $\operatorname{Im} \rho_{X}$ the non-symplectic order of X. An automorphism $\alpha \in$ Aut X is tame if α is of finite order and the order of α is not divisible by p. An automorphism of finite order which is divisible by p is called a wild automorphism. It is known that if $p>11$, there is no wild automorphism ([3]). When X is of finite height, an automorphism $\alpha \in \operatorname{Aut} X$ is weakly tame if the order of $\chi_{c r i s, X}(\alpha)$ is not divisible by p. Every tame automorphism is weakly tame. Since $\chi_{c r i s, X}(\alpha)$ is of finite order, all roots of $\varphi\left(\chi_{\text {cris, } X}(\alpha)\right)$ are roots of unity. Hence if a primitive n-th root of unity is an eigenvalue of $\chi_{\text {cris, } X}(\alpha)$, the rank of $T_{\text {cris }}(X)$ is at least $\phi(n)$ because $\varphi\left(\chi_{c r i s, X}(\alpha)\right) \in \mathbb{Z}[T]$. Therefore when X is of finite height and $p \geq 23$, every automorphism of X is weakly tame.

If X is of height h, α is a weakly tame automorphism of X and $\rho(\alpha)=\xi$ is of order n, then all the eigenvalues of $\alpha^{*} \mid H_{c r i s}^{2}(X / W)_{[1-1 / h]} \oplus H_{c r i s}^{2}(X / W)_{[1+1 / h]}$ are $\xi^{ \pm 1}, \xi^{ \pm p^{-1}}, \cdots, \xi^{ \pm p^{1-h}}$ up to multiplicity ([5], Theorem 2.9). By this and an argument based on the Tate conjecture for K3 surfaces ([9], [6]), we also proved the following.

Proposition([5], Corollary 3.3) Let k be an algebraically closed filed of odd characteristic p. Let X be a K3 surface over k equipped with an automorphism $\alpha \in \operatorname{Aut}(X)$ such that the order of $\rho_{X}(\alpha)$ is $N>2$. We assume the rank of the Neron-Severi group of X is at least $22-\phi(N)$. If $p^{m} \equiv-1$ modulo N for some m, X is supersingular. If $p^{m} \not \equiv-1$ modulo N for any m and the order of p in $(\mathbb{Z} / N \mathbb{Z})^{*}$ is n, X is of height n.

In the next section, we present a simple proof of the above proposition. For that, we prove the following theorem.

Theorem 2.1. Let k be an algebraically closed field of odd characteristic p. Assume X is a K3 surface over k and $N>2$ is the non-symplectic order of X. If $p^{m} \not \equiv-1$ modulo N for any m, X is of finite height. In this case, if n is the order of p in $(\mathbb{Z} / N)^{*}$, the height of X is a multiple of n.

When X is a complex algebraic K3 surface, the transcendental lattice of X is the orthogonal complement of the embedding

$$
N S(X) \hookrightarrow H^{2}(X, \mathbb{Z})
$$

We denote the transcendental lattice of X by $T(X)$. When $\rho(X)$ is the Picard number of X, the signature of $T(X)$ is $(2,20-\rho(X))$. If N is the non-symplectic order of X, the rank of $T(X)$ is a multiple of $\phi(N)$ ([7]). We say X is a nonsymplectic CM K3 surface of order N if $\operatorname{rank} T(X)$ is equal to $\phi(N)$. A nonsymplectic CM K3 surface gives a CM point in a moduli Shimura variety, so it has a model over a number field ([11]). It seems like that there are only few non-symplectic CM K3 surfaces. Also it is known that there is a unique nonsymplectic CM K3 surface of order N for many N. In a previous work ([5]), if X is a non-symplectic CM K3 surface of order N with $\phi(N)>10$ and $\operatorname{Im} \rho_{X}$ is generated by a purely non-symplectic automorphism, we proved that the height and the Artin invariant of a reduction of X over a field of odd characteristic p is determined by the congruence class of p modulo N. In the next section, we give a generalization of this result for an arbitrary non-symplectic CM K3 surface.

2. Results

Theorem 2.1. Let k be an algebraically closed field of odd characteristic p. Assume X is a K3 surface over k and $N>2$ is the non-symplectic order of X. If $p^{m} \not \equiv-1$ modulo N for any m, X is of finite height. In this case, if n is the order of p in $(\mathbb{Z} / N)^{*}$, the height of X is a multiple of n.

Proof. If X is a supersingular K3 surface of Artin-invariant σ, the non-symplectic order of X divides $p^{\sigma}+1$ ([8], Theorem 2.1). Hence under the assumption, X is not supersingular. Let us choose an automorphism $\alpha \in$ Aut X such that $\operatorname{Im} \rho_{X}$ is generated by $\rho_{X}(\alpha)$. If the order of $\chi_{\text {cris }, X}(\alpha)$ is $p^{r} M$ for $r, M \in \mathbb{N}$ with $p \nmid M, \alpha^{p^{r}}$ also generates $\operatorname{Im} \rho_{X}$ and is weakly tame. After replacing α by $\alpha^{p^{r}}$, we may assume α is weakly tame. Suppose the height of X is h. If $\xi=\rho_{X}(\alpha)$, by ([5], Theorem 2.9), all the eigenvalues of $\alpha^{*} \mid H_{c r i s}^{2}(X / W)_{[1-1 / h]}$ are $\xi^{-1}, \xi^{-1 / p}, \cdots, \xi^{-1 / p^{h-1}}$ up to multiplicity. On the other hand, if $\alpha^{*} x=\lambda x$ for some $x \in H_{c r i s}^{2}(X / W)_{[1-1 / h]}$,

$$
\alpha^{*}(V x)=V\left(\alpha^{*} x\right)=V(\lambda x)=\lambda^{1 / p} V x .
$$

Therefore for any $i \in \mathbb{Z}, \xi^{-1 / p^{i}}$ is an eigenvalue of $\alpha^{*} \mid H_{c r i s}^{2}(X / W)_{[1-1 / h]}$ and the rank of eigenspace for the eigenvalue $\xi^{-1 / p^{i}}$ is equal to the rank of
eigenspace for the eigenvalue ξ^{-1}. Hence the height h is divided by the order of p in $(\mathbb{Z} / N)^{*}$.
Corollary 2.2. Let k be an algebraically closed filed of odd characteristic $p . X$ is a K 3 surface over k equipped with an automorphism $\alpha \in \operatorname{Aut}(X)$ such that the order of $\rho_{X}(\alpha)$ is $N>2$. We assume the rank of the Neron-Severi group of X is at least $22-\phi(N)$. If $p^{m} \not \equiv-1$ modulo N for any m and the order of p in $(Z / N Z)^{*}$ is n, X is of height n.
Proof. By Theorem 2.1, X is of finite height and the height of X is a multiple of n. By the assumption, the rank of $T_{\text {cris }}(X)$ is $\phi(N)$. Since $\varphi\left(\chi_{\text {cris }, X}(\alpha)\right)$ is an integral polynomial of degree $\phi(N)$ and a primitive N-th root of unity is an eigenvalue of $\chi_{\text {cris, } X}(\alpha), \varphi\left(\chi_{c r i s, X}(\alpha)\right)$ is the N-th cyclotomic polynomial. It follows that every eigenvalue of $\chi_{\text {cris, } X}(\alpha)$ occurs only one time. Considering ([5], Theorem 2.9), the height of X is at most n. Therefore the height of X is n.

Let X be a non-symplectic CM K3 surface of order N. We may assume X is defined over a number field F. Let us fix a smooth projective integral model X_{R} of X over an integer ring R with Spec $R \subset \operatorname{Spec} \mathfrak{o}_{F}$. For each place $v \in \operatorname{Spec} R$, let p_{v} be the residue characteristic of v. We assume $p_{v} \nmid N$ and p_{v} is unramified in F for any $v \in \operatorname{Spec} R$. We denote the reduction of X_{R} over the residue field $k(v)$ by X_{v}.

Theorem 2.3. If $p_{v}^{m} \not \equiv-1$ modulo N for any $m \in \mathbb{Z}, X_{v}$ is of finite height and the height of X_{v} is the order of p_{v} in $(\mathbb{Z} / N)^{*}$. If $p_{v}^{m} \equiv-1$ for some $m \in \mathbb{Z}, X_{v}$ is supersingular. Moreover if p_{v} does not divide $d(N S(X))$, the Artin-invariant of X_{v} is the half of the order of p_{v} in $(\mathbb{Z} / N)^{*}$.

Proof. There is an embedding

$$
N S(X) \hookrightarrow N S\left(X_{v}\right)
$$

so the rank of $N S\left(X_{v}\right)$ is at least $22-\phi(N)$. Let N_{v} be the non-symplectic order of X_{v}. Then N_{v} is a multiple of N. If $p_{v}^{m} \not \equiv-1$ modulo N for any $m \in \mathbb{Z}, p_{v}^{m} \not \equiv-1$ modulo N_{v}, so X_{v} is of finite height. Since the rank of $T\left(X_{v}\right.$ is at least $\phi\left(N_{v}\right), \phi(N)=\phi\left(N_{v}\right)$ and $N_{v}=N$ or $N_{v}=2 N$. In any case, the order of p in $\left(\mathbb{Z} / N_{v}\right)^{*}$ is equal to the order of p in $(\mathbb{Z} / N)^{*}$. By Corollary 2.2, the height of X_{v} is the order of p_{v} in $(\mathbb{Z} / N)^{*}$. Assume the order of $\xi=\rho_{X}(\alpha)$ is N for some $\alpha \in$ Aut X. Let $T_{\text {cris }}(X)$ be the orthogonal complement of the embedding

$$
N S(X) \otimes W \hookrightarrow N S\left(X_{v}\right) \otimes W \hookrightarrow H_{c r i s}^{2}\left(X_{u p s i l o n} / W\right) .
$$

Since $H_{c r i s}^{2}(X / W)$ is canonically isomorphic to $H_{d r}^{2}\left(X_{R} / R\right) \otimes W, \alpha^{*} \mid T_{\text {cris }}(X)$ is of finite order. If X_{v} is of finite height, $T_{\text {cris }}\left(X_{v}\right) \subset T_{\text {cris }}(X)$ and all the eigenvalues of $\alpha^{*} \mid T_{\text {cris }}\left(X_{v}\right)$ are distinct. If $p^{m} \equiv-1$ modulo $N, \xi^{-1 / p^{m}}=\xi$ occurs as an eigenvalue of $\alpha^{*} \mid H_{c r i s}^{2}(X / W)_{[1-1 / h]}$. But ξ is also an eigenvalue of $\alpha^{*} \mid H_{c r i s}^{2}(X / W)_{[1+1 / h]}$ and it is a contradiction. Therefore X_{v} is supersingular.

If p does not divide $d(N S(X)), N S(X) \otimes W$ is unimodular and the Artininvariant of X_{v} is at most $\phi(N) / 2$. Also when σ is the Artin-invariant of X_{v}, N divides $p^{\sigma}+1$, so $p^{\sigma} \equiv-1$ modulo N. We have an isomorphism $N S\left(X_{v}\right)^{*} / N S\left(X_{v}\right)=T_{\text {cris }}(X)^{*} / T_{\text {cris }}(X)$ compatible with the action of Aut X. By ([5], theorem 2.9), if σ is greater than the half of the order of p_{v} in $(\mathbb{Z} / N)^{*}$, ξ appears more than twice in the eigenvalues of $\alpha^{*} \mid T_{\text {cris }}(X)$. Therefore the Artin-invariant of X_{v} is the half of the order of p_{v} in $(\mathbb{Z} / N)^{*}$.
Remark 2.4. If a non-symplectic CM K3 surface of order N, X has a reduction of height $\phi(N) / 2$ or of Artin invariant $\phi(N) / 2$, the Legendre symbol $\left(\frac{d(N S(X))}{p}\right)$ is constant for all primes p in a congruence class modulo N.

References

[1] Artin, M. and Mazur,B. Formal groups arising from algebraic varieties, Ann. Sci. École Norm. Sup(4) 10,1977,87-131.
[2] Francois, C. The Tate conjecture for K3 surfaces over finite fields, Invent. Math. 194, 2013, 119-145.
[3] Dolgachev, I. and Keum, J. Finite group of symplectic automorphisms of K3 surfaces in positive characteristic, Ann. of Math. 169, 2009, 269-313.
[4] Illusie, L. Report on crystalline cohomology, Algebraic Geometry, Proc. Sympos. Pure Math 29, 1975, 459-478.
[5] Jang, J. The representation of the automorphism groups on the transcendental cycles and the Frobenius invariants of K3 surface, arxiv:1312.7634.
[6] Madapusi Pera, K. The Tate conjecture for K3 surfaces in odd characterisitc, arXiv:1301.6326.
[7] Nukulin, V.V. Finite gropus of automorphisms of Kählerian K3 surfaces, Trudy Moskov. Mat. Obshch 38, 1979, 75-137.
8] Nygaard, N.O. Higher De Rham-Witt complexes of supersingular K3 surfaces, Compositio Math. 42, 1981, 245-271.
[9] Nygaard, N.O. and Ogus, A. Tate conjecture for K3 surfaces of finite height, Ann. of Math.(2) 122, 1985, 461-507.
[10] Ogus, A. A crystalline Torelli theorem for supersingular K3 surfaces, Prog. Math. 36, 1983, 361-394.
[11] Rizov, J. Kuga-Satake abelian varieties of K3 surfaces in mixed characteristic, J.reine angew. Math. 648, 2010, 13-67.
[12] Rudakov, A.N. and Shafarevich,I.R. Surfaces of type K3 over fields of finite characteristic, Current problems in mathematics, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii vol. 18, 1981, 115-207.

Junmyeong Jang
Department of Mathematics University of Ulsan Daehakro 93, Namgu Ulsan 680-749, Korea

E-mail address: jmjang@ulsan.ac.kr

[^0]: Received May 4, 2014; Accepted May 16, 2014.
 2010 Mathematics Subject Classification. 11G25, 14J20.
 Key words and phrases. K3 surface, Non-symplectic automorphism, Crystalline cohomology.

 This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2011-0011428).

