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ON REGULAR POLYGONS AND REGULAR SOLIDS

HAVING INTEGER COORDINATES FOR THEIR VERTICES

Changrim Jang

Abstract. We study the existence of regular polygons and regular solids

whose vertices have integer coordinates in the three dimensional space and

study side lengths of such squares, cubes and tetrahedra. We show that
except for equilateral triangles, squares and regular hexagons there is no

regular polygon whose vertices have integer coordinates. By using this,
we show that there is no regular icosahedron and no regular dodecahedron

whose vertices have integer coordinates. We characterize side lengths of

such squares and cubes. In addition to these results, we prove Ionascu’s
result [4, Theorem2.2] that every equilateral triangle of side length

√
2m

for a positive integer m whose vertices have integer coordinate can be a

face of a regular tetrahedron with vertices having integer coordinates in
a different way.

1. Introduction

Eugen J. Ionascu and his colleagues did much work on regular polygons and
regular solids whose vertices have integer coordinates[1, 3, 4, 5]. Some of their
results are as follows:

Theorem 1.1. [3] For an equilateral triangle ∆OPQ (O is the origin) in the
three dimensionl space R3, if the vertices P and Q have integer coordinates(x, y, z)
and (u, v, w), then there exists a positive integer d satisfies

a2 + b2 + c2 = 3d2, (1.1)

where a = yw− zv, b = zu−xw. c = xv−yu. In particular the triangle lies on
the plane ax+ by+ cz = 0 . Conversely, if integers a, b, c and a positive integer
d satisfies (1.1) then there exists infinitely many equilateral triangles lying on
the plane ax+ by + cz = 0 whose vertices have integer coordinates.

Theorem 1.2. [3] An equilateral triangle of side length l whose vertices have
integer coordinates in the three dimensional space R3 exists, if and only if
l =

√
2(m2 −mn+ n2) for some integers m and n ( not both zero).
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Theorem 1.3. [5] There is no regular icosahedron and no regular dodecahedron
whose vertices have integer coordinates in R3 .

Theorem 1.4. [3] A regular tetrahedron of side length l whose vertices have

integer coordinates exists in R3, if and only if l =
√

2m for some positive
integer m .

We show that among regular polygons in R3, only equilateral triangles,
squares and regular hexagons can have integer coordinates for their vertices .
Using this we prove Theorem1.3 in a different way. We show that a square of
side length l whose vertices have integer coordinates exists in R3, if and only if
l =
√
m2 + n2 for some integers m and n ( not both zero). Also we show that

a cube of side length l whose vertices have integer coordinates exists in R3, if
and only if l = m for some positive integer m . In [4] E.J.Ionascu showed that

an equilateral triangle of side length l =
√

2m(m is a positive integer) whose
vertices have integer coordinates can be a face of a tetrahedron having integer
coordinates for its vertices by using a parametrization of equilateral triangles
whose vertices have integer coordinates. In this paper we show the same result
by a direct method without using the parametrization.

2. Main Results

Theorem 2.1. If a regular n−polygon in the three dimensional space R3 has
rational coordinates for its vertices, then n = 3, 4 or 6.

Proof. Let Pn be a regular polygon in R3 whose vertices X1, X2, · · · , Xn have
rational coordinates (x1, y1, z1), (x2, y2, z2), · · · , (xn, yn, zn). Then the centroid

O = (
∑n

i=1 xi

n ,
∑n

i=1 yi
n ,

∑n
i=1 zi
n ) of Pn has rational coordinates. Also the com-

ponents of the vectors
−−→
OXi = (xi −

∑n
i=1 xi

n , yi −
∑n

i=1 yi
n , zi −

∑n
i=1 zi
n ), i =

1, 2, · · · , n are all rationals. So the cosine value cos 2π
n =

−−−→
OX1·

−−−→
OX2

‖
−−−→
OX1‖‖

−−−→
OX2‖

=
−−−→
OX1·

−−−→
OX2

‖
−−−→
OX1‖

2 is a rational number. Thus the value can be written as cos 2π
n = s

t for

integers s and t( 6= 0). Since

(z − cos
2π

n
− i sin

2π

n
)(z − cos

2π

n
+ i sin

2π

n
) = z2 − 2s

t
z + 1

and n ≥ 3, the irreducible polynomoal of the complex number cos 2π
n + i sin 2π

n
over the rarional field Q is

z2 − 2s

t
z + 1.

Also it is known that the irreducible polynomoal of the complex number cos 2π
n +

i sin 2π
n over the rarional field Q is the nth cyclotomic polynomial

gn(z) = Π
φ(n)
i=1 (z − ξi),
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where ξ1, ξ2, · · · , ξφ(n) are all the primitive nth roots of unity and φ is the Euler

function. So we have gn(z) = z2 − 2s
t z + 1, which implies that φ(n) = 2. From

this it follows that n = 3, 4 or 6.
�

Theorem 2.2. There is no regular icosahedron and no regular dodecahedron
whose vertices have rational coordinates.

Proof. By Theorem2.1 there is no regular pentagon whose vertices have rational
coordinates. Since every face of a regular dodecahedron is a regular pentagon,
it follows that there is no regular dodecahedron whose vertices have rational
coordinates. Now assume that there is a regular icosahedron whose vertices
have rational coordinates. Then the dual solid of this regular icosahedron
is a regular dodecahedron whose vertices have rational coordinates. This is a
contradiction. Thus there is no regular icosahedron whose vertices have rational
coordinates. �

The following theorem implies that the study of regular hexagons whose
vertices have integer coordinates can be reduced to the study of equilateral
triangles whose vertices have integer coordinates.

Theorem 2.3. A regular hexagon whose vertices have integer coordinate is
divided into six equilateral triangles whose vertices have integer coordinates with
the centroid of the given regular hexagon as their common vertex. Conversely,
for a given equilateral triangle whose vertices have integer coordinate, we can
construct a regular hexagon whose vertices have integer coordinate with one
vertex of a given equilateral triangle as its centroid.

Proof. Let H be a regular hexagon whose vertices Vi(xi, yi, zi), i = 1, 2, 3, 4, 5, 6
have integer coordinates. Then by a translation , we can see that the six
vertices Ui = Vi − V1, i = 1, 2, 3, 4, 5, 6 forms a regular hexagon. Note that
U1 is the origin O. Then nonadjacent three vertices U1, U3 and U5 forms an

equilateral triangle. Then the point P (
x′
3+x

′
5

3 ,
y′3+y

′
5

3 ,
z′3+z

′
5

3 ) is the centroid of
the triangle , where x′i = xi − x1, y′i = yi − y1 and z′i = zi − z1 for i = 3, 5.
Since U4 is symmetric to U1 with respect to P , we know that (x′4, y

′
4, z
′
4) =

(
2(x′

3+x
′
5)

3 ,
2(y′3+y

′
5)

3 ,
2(z′3+z

′
5)

3 ), where x′4 = x4−x1, y′4 = y4−y1 and z′4 = z4−z1.
This implies that x′3+x′5, y

′
3+y′5 and z′3+z′5 are all multiples of 3. So we can see

that P (
x′
3+x

′
5

3 ,
y′3+y

′
5

3 ,
z′3+z

′
5

3 ) is a point with integer coordinates. Therefore the
hexagon with the six vertices Ui, i = 1, 2, 3, 4, 5, 6 is devided into six equilateral
triangles

∆PU1U2,∆PU2U3,∆PU3U4,∆PU4U5,∆PU5U6 and ∆PU6U1

whose vertices have integer coordinates. By another translation by V1 we can
observe the hexagon H is divided into such equilateral triangles. Conversely
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assume that three points O(0, 0, 0), P (x, y, z) and Q(u, v, w) having integer co-
ordinates forms an equilateral triangle. Then the six points

(u, v, w), (x, y, z), (x− u, y − v, z − w), (−u,−v,−w), (−x,−y,−z)
and

(u− x, v − y, w − z)

forms a regular hexagon with the origin its centroid. �

Suppose that the vertices P,Q and R of a square �OPQR (O is the origin)
have integer coordinates (x, y, z), (u, v, w) and (x+u, y+v, z+w) , respectively.
Then the numbers a = yw−zv, b = zu−xw and c = xv−yu satisfy the equation

a2 + b2 + c2 = d2,

where d = x2 + y2 + z2 = u2 + v2 + w2. In particular the square �OPQR lies
on the plane ax + by + cz = 0. Conversely consider a plane ax + by + cz = 0
with integer coefficients. And suppose that a, b and c satisfy a2 + b2 + c2 = d2

for an integer d . Consider a point P (u, v, w) with integer coordinates lying on
the plane ax+by+cz = 0 . Then the point R(x, y, z) with rational coordinates

x =
cv − bw

d
, y =

aw − cu
d

, z =
bu− av

d

lies on the plane ax + by + cz = 0. And we can see that the four points O(
the origin) , (du, dv, dw), (d(u+x), d(v+ y), d(w+ z)) and (dx, dy, dz) forms a
square with vertices having integer coordinates. We have the following theorem.

Theorem 2.4. For a square �OPQR (O is the origin) if the vertices P,R
and Q have integer coordinates (x, y, z), (u, v, w) and (x + u, y + v, z + w) ,
respectively. then there exists a positive integer d satisfying

a2 + b2 + c2 = d2, (2.1)

where a = yw − zv, b = zu − xw and c = xv − yu . In particular the square
lies on the plane ax+ by+ cz = 0 . Conversely, if integers a, b, c and a positive
integer d satisfies (2.1) then there exists infinitely many squares whose vertices
have integer coordinates on the plane ax+ by + cz = 0 .

Theorem 2.5. A square of side length l whose vertices have integer coordinates
in the three dimensional space R3 exists, if and only if l =

√
m2 + n2 for some

integers m and n( not both zero).

Proof. For sufficiency, consider the square whose vertices are the four points
O(0, 0, 0), P (m,n, 0), R(n,−m, 0) and Q(m + n, n −m, 0) for given integers

m and n( not both zero). The side length of this square is
√
m2 + n2 . For

necessity, consider a square �OPQR (O is the origin) whose vertices P,R andQ
have integer coordinates (x, y, z), (u, v, w) and (x+u, y+v, z+w) , respectively.
The square lies on the plane ax+ by+ cz = 0, where a = yw− zv, b = zu−xw
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and c = xv − yu . Since au + bv + cw = 0, the side lengh l of the square
�OPQR satisfies

l2 = u2 + v2 + w2 = (
bv + cw

a
)2 + v2 + w2

=
(a2 + b2)v2 + 2bcvw + (a2 + c2)w2

a2

=
((a2 + b2)v + bcw)2 + (awd)2

(a2)2 + (ab)2
, (2.2)

where d =
√
a2 + b2 + c2 = x2 +y2 +z2 = l2. Since the necessary and sufficient

condition for that an integer N can be written as the sum of two squares is
that the prime-power decomposition of N does not contain a prime factor
congruent to 3 (mod 4) to an odd power[2], the prime-power decompositions
of two integers (a2 + b2)v + bcw)2 + (awd)2 and (a2)2 + (ab)2 do not contain
a prime congruent to 3( mod 4) to an odd power. By (2.2), the integer l2 is
a ratio of two integers (a2 + b2)v + bcw)2 + (awd)2 and (a2)2 + (ab)2 , which

implies l2 is a sum of two squares. So l can be written as
√
m2 + n2 for some

integers m and n . �

Theorem 2.6. A square �OPQR (O is the origin) whose vertices have integer
coordinates can be a face of a cube whose vertices have integer coordinates if
and only if the side length of this square is equal to an integer value m .

Proof. Suppose that the vertices P,R and Q have integer coordinates (x, y, z),
(u, v, w) and (x + u, y + v, z + w), respectively and that the side length l =√
x2 + y2 + z2 =

√
u2 + v2 + w2 satisfies

l2 = x2 + y2 + z2 = u2 + v2 + w2 = m2

for an integer m. Then, since xu+ yv + zw = 0, we have

m2 = u2 + v2 + w2 = (
yv + zw

x
)2 + v2 + w2

=
(x2 + y2)v2 − 2yzvw + (x2 + z2)w2

x2

=
(m2 − z2)v2 − 2yzvw + (m2 − y2)w2

x2

which implies that m2x2 = m2(v2 +w2)− (yw−xv)2 or (yw−xv)2 = m2(v2 +
w2 − x2). From this it follows that m is a divisor of the integer yw − xv. By
similar argumenst, we can see that m is also a divisor of the integers zu− xw
and xu − yv. So the point S(yw−zvm , zu−xwm , xv−yum ) has integer coordinates
and the eight points O,P,Q,R, S, P + S,Q+ S and R+ S form a cube whose
vertices have integer coordinates. Conversely, suppose that a cube has integer
coordinates for its vertices and a square �OPQR (O is the origin) is a face of
the cube . Let (x, y, z) and (u, v, w) be coordinates of two vertices P and R
. Then the point S(yw−zvl , zu−xwl , xv−yul ) or S( zv−ywl , xw−zul , yu−xvl ) must be
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a vertex of the cube , where l is the side length of the cube , which implies
the point S(yw−zvl , zu−xwl , xv−yul ) must have integer coordinates, which implies

that l is an rational numer. By theorem2.5 l is equal to
√
m2 + n2 for some

integers m and n. So the number l must be an integer. �

In [5] Ionascu showed that every equilateral triangle of side length
√

2m for
a positive integer m whose vertices have integer coordinates can be a face of a
regular tetrahedron with vertices having integer coordinates for its vertices. He
proved it by using his parametrization of equilateral triangles whose vertices
have integer coordinates[3]. We prove it in a elementary way without using the
parametrization.

Theorem 2.7. If ∆OPQ is an equilateral triangle of side length
√

2m for a
positive integer m , have integer coordinates for its vertices. Then it can be a
face of a tetrahedron whose vertices have integer coordinates.

Proof. By assumption, the vertices P and Q have integer coordinates (x, y, z)
and (u, v, w), respectively. Also the side length l satisfies

l2 = x2 + y2 + z2 = u2 + v2 + w2 = 2m2 (2.3)

for an integer m. And we see that with any of two points

R(
u+ x

3
+

2(yw − zv)

3m
,
v + y

3
+

2(zu− xw)

3m
,
w + z

3
+

2(xv − yu)

3m
)

and

R′(
u+ x

3
− 2(yw − zv)

3m
,
v + y

3
− 2(zu− xw)

3m
,
w + z

3
− 2(xv − yu)

3m
)

the triangle ∆OPQ forms a tetrahedron. We will show that one of two points
R and R′ must be a point with integer coordinates. From (2.3) and the fact
that ∆OPQ is an equilateral triangle it follows that

xu+ yv + zw = m2. (2.4)

By Theorem1.1 we know that both of u and v cannot be zeros. Without loss
of generality assume that x 6= 0. Then from (2.4) we have

u =
m2 − yv − zw

x
.

Substituting this into u2 + v2 + w2 = 2m2 and using x2 + y2 + z2 = 2m2 and
(2.4) we have

2m2 = u2 + v2 + w2 = (
m2 − yv − xw

x
)2 + v2 + w2

=
1

x2
{m4 − 2m2(yv + zw) + (x2 + y2)v2 + 2yzvw + (x2 + z2)w2}

=
1

x2
{m4 + 2m2(xu−m2) + (2m2 − z2)v2 + 2yzvw + (2m2 − y2)w2}

=
1

x2
{−m4 + 2m2xu+ 2m2(2m2 − u2)− (yw − xv)2},
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which implies that

2m2x2 = 3m4 + 2m2xu− 2m2u2 − (yw − zv)2

or

(yw − zv)2 = m2(3m2 + 6xu− 2(x+ u)2).

From this we see that yw − zv is a multiple of m . By similar arguments we
see that zu− xw and xv − yu are also multiples of 3 . So the points

(u+ x± 2(yw − zv)

m
, v + y ± 2(zu− xw)

m
,w + z ± 2(xv − yu)

m
)

have integer coordinates. By a computation, we have

(
2(yw − zv)

m
)2 + (

2(zu− xw)

m
)2 + (

2(xv − yu)

m
)2 = 12m2. (2.5)

We proceed with two cases separately

Case 1. u+ x ≡ 0 (mod 3)
Since (u + x)2 + (v + y)2 + (w + z)2 = 6m2 ≡ 0 (mod 3), The condition
u + x ≡ 0 (mod 3) implies that v + y ≡ 0 (mod 3) and w + z ≡ 0 (mod 3) .
From (yw− zv)2 = m2(3m2 + 6xu−2(x+u)2) and u+x ≡ 0 (mod 3) we know
2(yw−zv)

m is a multiple of 3. By similar methods we can derive that 2(zu−xw)
m

and 2(xv−yu)
m are also multiples of 3. So we see that

R(
u+ x

3
+

2(yw − zv)

3m
,
v + y

3
+

2(zu− xw)

3m
,
w + z

3
+

2(xv − yu)

3m
)

and

R′(
u+ x

3
− 2(yw − zv)

3m
,
v + y

3
− 2(zu− xw)

3m
,
w + z

3
− 2(xv − yu)

3m
)

have integer coordinates.

Case 2. u+ x 6≡ 0 (mod 3)
Since (u + x)2 + (v + y)2 + (w + z)2 = 6m2 ≡ 0 (mod 3), the condition
u + x 6≡ 0 (mod 3) implies that neither v + y nor w + z is a multiple of 3.

From (yw − zv)2 = m2(3m2 + 6xu− 2(x+ u)2) we know that 2(yw−zv)
m is not

a multiple of 3. By similar methods we can derive that neither 2(zu−xw)
m nor

2(xv−yu)
m is a multiple of 3. Since two points P (x, y, z) and Q(u, v, w) lies on

the plane ax + by + cz = 0(a = yw − zv, b = zu − xw, c = xv − yu), the
equation (2.5) implies that

(u+ x± 2(yw − zv)

m
)
2(yw − zv)

m
+ (v + y ± 2(zu− xw)

m
)
2(zu− xw)

m

+(w + z ± 2(xv − yu)

m
)
2(xv − yu)

m
≡ 0 (mod 3) (2.6)
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From the fact that no element of the set

{u+ x, y + v, z + w,
2(yw − zv)

m
,

2(zu− xw)

m
,

2(xv − yu)

m
}

is a multiple of 3 it follows that at least two elements of the set

{u+ x+
2(yw − zv)

m
, v + y +

2(zu− xw)

m
,w + z +

2(xv − yu)

m
}

or at least two elements of the set

{u+ x− 2(yw − zv)

m
, v + y − 2(zu− xw)

m
,w + z − 2(xv − yu)

m
}

must be multiples of 3. If two elements of either set are multiples of 3, then
from (2.6) it follows that all three elements of the set are multiples of 3. So we
can conclude that either R or R′ has integer coordinates. �
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