

ON GENERALIZED TRIANGULAR MATRIX RINGS

JANG HO CHUN AND JUNE WON PARK

ABSTRACT. For a generalized triangular matrix ring $T = \begin{bmatrix} R & M \\ 0 & S \end{bmatrix}$, over rings R and S having only the idempotents 0 and 1 and over an (R, S)-bimodule M, we characterize all homomorphisms α 's and all α -derivations of T. Some of the homomorphisms are compositions of an inner homomorphism and an extended or a twisted homomorphism.

1. Introduction

For R and S are rings with identity and M is an (R, S)-bimodule, we consider a generalized triangular matrix ring $T = \begin{bmatrix} R & M \\ 0 & S \end{bmatrix}$. Automorphisms of T were characterized when R and S have only the trivial idempotents 0 and 1(see[5]). Moreover, in case R and S are strongly indecomposable all automorphisms of T are observed in [1]. In these cases, every automorphism is a composition of an extended automorphism and an inner automorphism. In [4], Ghosseiri determined the structure of (α, β) -derivations of T, where α and β are automorphisms of T. Moreover, Ghahramani and Moussavi characterized homomorphisms and derivations of T (see [2],[3]).

In this paper, we characterize all homomorphisms α 's of T and all α -derivations of T, and get four types of homomorphisms of T, where one type is a composition of an inner homomorphism and an extended homomorphism and other one type is a composition of an inner homomorphism and a twisted homomorphism.

Throughout this paper, for a generalized triangular matrix ring T, R and S have only the trivial idempotents 0 and 1 and M is an (R, S)-bimodule. Every endomorphism α means a ring homomorphism preserving identity i.e., $\alpha(1) = 1$ and for a homomorphism α the additive map $\delta : T \to T$ is called an α -derivation if $\delta(tt') = \alpha(t)\delta(t') + \delta(t)t', (t, t' \in T)$.

©2014 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received February 25, 2013; Accepted December 13, 2013.

²⁰¹⁰ Mathematics Subject Classification. 16S32, 16S50.

Key words and phrases. automorphisms, homomorphisms, derivations, generalized triangular matrix rings.

Thank you for reading.

2. Homomorphisms of T

In this section, we characterize that there exist only four types of homomorphisms of T. First we define four types of homomorphisms.

Type I. Let $\phi_1 : R \to R$ and $\psi_1 : S \to S$ be homomorphisms and $\theta_1 : M \to R$ M is a ϕ_1, ψ_1 -bimodule homomorphism. For a fixed element m of M, if we define $\alpha: T \to T$ by

$$\alpha\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right)=\left[\begin{array}{cc}\phi_1(a)&\theta_1(b)\\0&\psi_1(c)\end{array}\right],\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\in T\right).$$

Then we can easily check that α is a homomorphism of T. Since $\begin{bmatrix} 1 & -m \\ 0 & 1 \end{bmatrix}$ is an inverse element of $\begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$ induces an inner automorphism inn_{m_t} , where m_t stands for $\begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}$. If we define $\alpha_1 = inn_{m_t} \cdot \alpha$, then α_1 is a homomorphism i.e.,

$$\alpha_1\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}1&-m\\0&1\end{array}\right]\left[\begin{array}{cc}\phi_1(a)&\theta_1(b)\\0&\psi_1(c)\end{array}\right]\left[\begin{array}{cc}1&m\\0&1\end{array}\right],\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\in T\right).$$

This homomorphism α_1 is a composition of an inner automorphism and an extended homomorphism.

Type II. Let $\phi_2 : R \to S$ and $\psi_2 : S \to R$ be homomorphisms. For a fixed element m of M, if we define $\alpha_2: T \to T$ by

$$\alpha_2 \left(\left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] \right) = \left[\begin{array}{cc} 1 & m \\ 0 & 1 \end{array} \right] \left[\begin{array}{cc} \psi_2(c) & 0 \\ 0 & \phi_2(a) \end{array} \right] \left[\begin{array}{cc} 1 & -m \\ 0 & 1 \end{array} \right], \left(\left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] \in T \right)$$

Then α_2 is a homomorphism, which is a composition of an inner automorphism and a twisted homomorphism.

Type III. Let $\phi_3 : R \to R$ and $\psi_3 : R \to S$ be homomorphisms and $\theta_3 : R \to R$ M be an additive map such that $\theta_3(aa') = \phi_3(a)\theta_3(a') + \theta_3(a)\psi_3(a')(a,a' \in R).$ If we define $\alpha_3: T \to T$ by

$$\alpha_3\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}\phi_3(a)&\theta_3(a)\\0&\psi_3(a)\end{array}\right], \left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\in T\right).$$

Then α_3 is a homomorphism.

Type IV. Let $\phi_4 : S \to R$ and $\psi_4 : S \to S$ be homomorphisms and $\theta_4 : S \to M$ be an additive homomorphism such that $\theta_4(cc') = \phi_4(c)\theta_4(c') + \theta_4(c)\psi_4(c'), (c,c' \in S)$. If we define $\alpha_4 : T \to T$ by

$$\alpha_4\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}\phi_4(c)&\theta_4(c)\\0&\psi_4(c)\end{array}\right], \left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\in T\right).$$

Then α_4 is a homomorphism.

For convenience, denote the idempotents $e_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $e_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Also, $0 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

Remark 2.2. From Lemma 2.1, we conclude that there are only four cases of homomorphisms α 's which are depended on the values of r_i, s_i, m_i . The four cases are followings;

Case I. $r_1 = 1, r_2 = 0, s_1 = 0, s_2 = 1$. This implies $m_1 = m, m_2 = -m$. Case II. $r_1 = 0, r_2 = 1, s_1 = 1, s_2 = 0$. This implies $m_1 = m, m_2 = -m$ and

 $m_b = 0.$

Case III. $r_1 = 1, r_2 = 0, s_1 = 1, s_2 = 0$. This implies $m_1 = m_2 = m_b = 0$. Case IV. $r_1 = 0, r_2 = 1, s_1 = 0, s_2 = 1$. This implies $m_1 = m_2 = m_b = 0$.

From Lemma 2.1 and Remark 2.2, we have the following theorems. **Theorem 2.3**. Case I homomorphisms are Type I homomorphisms.

 $\begin{array}{l} Proof. \text{ Since } r_1 = s_2 = 1, r_2 = s_1 = 0, \ \alpha(e_{11}) = \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix}, \alpha(e_{22}) = \\ \begin{bmatrix} 0 & -m \\ 0 & 1 \end{bmatrix} \text{ and } \alpha\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & m_b \\ 0 & 0 \end{bmatrix}. \text{ Thus we can define } \theta_1 : M \rightarrow \\ M \text{ by } \theta_1(b) = m_b. \\ \text{ Let } \alpha(ae_{11}) = \left(\begin{bmatrix} r_a & m_a \\ 0 & s_a \end{bmatrix}\right). \text{ Then } \alpha(ae_{11}) = \alpha(ae_{11})\alpha(e_{11}) = \begin{bmatrix} r_a & m_a \\ 0 & s_a \end{bmatrix} \\ \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} r_a & r_a m \\ 0 & 0 \end{bmatrix}. \text{ So, } s_a = 0 \text{ and } m_a = r_a m. \text{ Thus we can define } \\ \phi_1 : R \rightarrow R \text{ by } \phi_1(a) = r_a. \\ \text{ Let } \alpha(ce_{22}) = \left(\begin{bmatrix} r_c & m_c \\ 0 & s_c \end{bmatrix}\right). \text{ Then } \alpha(ce_{22}) = \alpha(e_{22})\alpha(ce_{22})] = \begin{bmatrix} 0 & -m \\ 0 & 1 \end{bmatrix} \\ \begin{bmatrix} r_c & m_c \\ 0 & s_c \end{bmatrix} = \begin{bmatrix} 0 & -ms_c \\ 0 & s_c \end{bmatrix}. \text{ So, } r_c = 0 \text{ and } m_c = -ms_c. \text{ Thus we can define } \\ \psi_1 : S \rightarrow S \text{ by } \psi_1(c) = s_c. \\ \text{ Therefore, we conclude } \alpha\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} r_a & r_am + m_b - ms_c \\ 0 & 1 \end{bmatrix} = \\ \begin{bmatrix} \phi_1(a) & \phi_1(a)m + \theta_1(b) - m\psi_1(c) \\ 0 & \psi_1(c) \end{bmatrix} = \begin{bmatrix} 1 & -m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \phi_1(a) & \theta_1(b) \\ 0 & \psi_1(c) \end{bmatrix} \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix}. \\ \text{ Moreover, for } a \in R \text{ and } b \in M, \alpha\left(\begin{bmatrix} 0 & ab \\ 0 & 0 \end{bmatrix}\right) = \alpha(ae_{11})\alpha\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \\ \begin{bmatrix} \phi_1(a) & \phi_1(a)m \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & \theta_1(b) \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & \phi_1(a)\theta_1(b) \\ 0 & 0 \end{bmatrix} \text{ and } \alpha\begin{bmatrix} 0 & ab \\ 0 & 0 \end{bmatrix} = \\ \begin{bmatrix} 0 & \theta_1(ab) \\ 0 & 0 \end{bmatrix}. \text{ So, } \theta_1(ab) = \phi_1(a)\theta_1(b). \\ \text{ Similarly, for } b \in M \text{ and } c \in S, \theta_1(bc) = \theta_1(b)\psi_1(c). \\ \end{array}$

Theorem 2.4. Case II homomorphisms are Type II homomorphisms. Proof. Since $r_1 = s_2 = 0, r_2 = s_1 = 1$ and $r_b = s_b = m_b = 0, \alpha(e_{11}) = \begin{bmatrix} 0 & m \\ 0 & 1 \end{bmatrix}, \alpha(e_{22}) = \begin{bmatrix} 1 & -m \\ 0 & 0 \end{bmatrix}$ and $\alpha\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = 0.$

Let
$$\alpha(ae_{11}) = \begin{bmatrix} r_a & m_a \\ 0 & s_a \end{bmatrix}$$
. Then $\alpha(ae_{11}) = \alpha(e_{11})\alpha(ae_{11}) = \begin{bmatrix} 0 & m \\ 0 & 1 \end{bmatrix}$
 $\begin{bmatrix} r_a & m_a \\ 0 & s_a \end{bmatrix} = \begin{bmatrix} 0 & ms_a \\ 0 & s_a \end{bmatrix}$. So, $r_a = 0$. Thus we can define $\phi_2 : R \to S$ by $\phi_2(a) = s_a$.
Let $\alpha(ce_{22}) = \begin{bmatrix} r_c & m_c \\ 0 & s_c \end{bmatrix}$. Then $\alpha(ce_{22}) = \alpha(ce_{22})\alpha(e_{22}) = \begin{bmatrix} r_c & m_c \\ 0 & s_c \end{bmatrix}$
 $\begin{bmatrix} 1 & -m \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} r_c & -r_c m \\ 0 & 0 \end{bmatrix}$. So, $s_c = 0$. Thus we can define $\psi_2 : S \to R$ by $\psi_2(c) = r_c$.
Therefore, we conclude $\alpha\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} r_c & ms_a - r_c m \\ 0 & s_a \end{bmatrix}$
 $= \begin{bmatrix} \psi_2(c) & m\phi_2(a) - \psi_2(c)m \\ 0 & \phi_2(a) \end{bmatrix} = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \psi_2(c) & 0 \\ 0 & \phi_2(a) \end{bmatrix} \begin{bmatrix} 1 & -m \\ 0 & 1 \end{bmatrix}$.

Theorem 2.5. Case III homomorphisms are Type III homomorphisms. Proof. Since $r_1 = s_1 = 1$, $r_2 = s_2 = 0$ and $m_1 = m_2 = m_b = 0$, $\alpha(e_{11}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\alpha(e_{22}) = 0$ and $\alpha\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = 0$. Let $\alpha(ae_{11}) = \begin{bmatrix} r_a & m_a \\ 0 & s_a \end{bmatrix}$, then we can define $\phi_3 : R \to R$ by $\phi_3(a) = r_a, \psi_3 : R \to S$ by $\psi_3(a) = s_a$ and $\theta_3 : R \to M$ by $\theta_3(a) = m_a$. Now, for $a, a' \in R$, $\alpha(aa'e_{11}) = \alpha(ae_{11})\alpha(a'e_{11}) = \begin{bmatrix} \phi_3(a) & \theta_3(a) \\ 0 & \psi_3(a) \end{bmatrix}$ $\begin{bmatrix} \phi_3(a') & \theta_3(a') \\ 0 & \psi_3(a') \end{bmatrix} = \begin{bmatrix} \phi_3(a)\phi_3(a') & \phi_3(a)\theta_3(a') + \theta_3(a)\psi_3(a') \\ 0 & \psi_3(a)\psi_3(a') \end{bmatrix}$ and $\alpha(aa'e_{11}) = \begin{bmatrix} \phi_3(aa') & \theta_3(aa') \\ 0 & \psi_3(aa') \end{bmatrix}$. This means that ϕ_3, ψ_3 are homomorphisms and θ_3 is additive, which satisfies $\theta_3(aa') = \phi_3(a)\theta_3(a') + \theta_3(a)\psi_3(a')$.

Theorem 2.6. Case IV homomorphisms are Type IV homomorphisms. Proof. The proof is similar to the proof of Theorem 2.5. \Box

Remark 2.7. Case II, III and IV homomorphisms cannot be isomorphisms. So, every automorphism of T is a Type I automorphism which is a composition of an inner automorphism and an extended automorphism.

3. Derivations of T

In this section, we will observe all α -derivations where α is a homomorphism given in Section 2. Since there are four types of homomorphisms, we get four types of α -derivations.

Theorem 3.1. Let $\alpha_1 : T \to T$ be a Type I homomorphism for some fixed element $m \in M$. Then $\delta: T \to T$ is an α_1 -derivation if and only if there exist (i) $f: R \to R$ is a ϕ_1 -derivation,

(ii) $q: S \to S$ is a ψ_1 -derivation and

(iii) $h: M \to M$ is an additive map satisfying $h(ab) = \phi_1(a)h(b) + f(a)b$ and $h(bc) = \theta_1(b)g(c) + h(b)c$ such that for some $b_1 \in M$,

$$\delta\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}f(a)&\phi_1(a)b_1 - b_1c - mg(c) + h(b)\\0&g(c)\end{array}\right].$$

where ϕ_1, ψ_1, θ_1 are maps given in Type I homomorphisms in Section 2.

Proof. Since α_1 is a Type I homomorphism, assume $\alpha_1 \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \begin{bmatrix} 1 & -m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \phi_1(a) & \theta_1(b) \\ 0 & \psi_1(c) \end{bmatrix} \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \phi_1(a) & \phi_1(a)m + \theta_1(b) - m\psi_1(c) \\ 0 & \psi_1(c) \end{bmatrix}$ for some $m \in M$. $\begin{array}{l} \text{ for some } m \in M. \\ \text{ Let } \delta(e_{11}) = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} \text{. Then } \delta(e_{11}) = \alpha_1(e_{11})\delta(e_{11}) + \delta(e_{11})e_{11} = \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix} \\ \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} + \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} e_{11} = \begin{bmatrix} a_1 & b_1 + mc_1 \\ 0 & 0 \end{bmatrix} + a_1e_{11} = \begin{bmatrix} 2a_1 & b_1 + mc_1 \\ 0 & 0 \end{bmatrix}. \end{array}$ So, $c_1 = a_1 = 0$. Thus $\delta(e_{11}) = \begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix}$. Since $0 = \delta(1) = \delta(e_{11}) + \delta(e_{22}), \ \delta(e_{22}) = \begin{bmatrix} 0 & -b_1 \\ 0 & 0 \end{bmatrix}.$ (i) Let $\delta(ae_{11}) = \begin{bmatrix} a_R & a_M \\ 0 & a_S \end{bmatrix}$. Then $\delta(ae_{11}) = \delta(e_{11}ae_{11}) = \alpha_1(e_{11})\delta(ae_{11}) + \delta(e_{11})(ae_{11}) = \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_R & a_M \\ 0 & a_S \end{bmatrix} + \begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix} ae_{11} = \begin{bmatrix} a_R & a_M + ma_S \\ 0 & 0 \end{bmatrix}$. So, $a_S = 0$. Thus $\delta(ae_{11}) = \begin{bmatrix} a_R & a_M \\ 0 & 0 \end{bmatrix}$. On the other hand, $\delta(ae_{11}) = \delta(ae_{11}e_{11}) = \alpha_1(ae_{11})\delta(e_{11}) + \delta(ae_{11})e_{11} = \begin{bmatrix} \phi_1(a) & \phi_1(a)m \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} a_R & a_M \\ 0 & 0 \end{bmatrix} e_{11} = \begin{bmatrix} 0 & \phi_1(a)b_1 \\ 0 & 0 \end{bmatrix} + a_Re_{11} = \begin{bmatrix} a_R & \phi_1(a)b_1 \\ 0 & 0 \end{bmatrix}$. So, $a_M = \phi_1(a)b_1$. Thus $\delta(ae_{11}) = \begin{bmatrix} a_R & \phi_1(a)b_1 \\ 0 & 0 \end{bmatrix}$.

If we define $\vec{f}: R \to R$ by $f(a) = a_R$, then we can easily check that f is a ϕ_1 -derivation.

$$\begin{array}{l} (ii) \operatorname{Let} \delta(ce_{22}) = \begin{bmatrix} c_R & c_M \\ 0 & c_S \end{bmatrix} \text{. Then } \delta(ce_{22}) = \delta(e_{22}ce_{22}) = \alpha_1(e_{22})\delta(ce_{22}) + \\ \delta(e_{22})ce_{22} = \begin{bmatrix} 0 & -m \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -m \\ 0 & c_S \end{bmatrix} + \begin{bmatrix} 0 & -b_1 \\ 0 & 0 \end{bmatrix} ce_{22} = \begin{bmatrix} 0 & -m \\ 0 & c_S \end{bmatrix} + \\ \begin{bmatrix} 0 & -b_1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -m \\ 0 & c_S \end{bmatrix} \text{. So, } c_R = 0 \text{ and } -b_1 c - m c_S = c_M. \text{ Thus} \\ \delta(ce_{22}) = \begin{bmatrix} 0 & -b_1 c - m \\ 0 & c_S \end{bmatrix} \text{. } \text{If we define } g: S \to S \text{ by } g(c) = c_S, \text{ then } g \text{ is a } \psi_1 \text{-derivation.} \\ (iii) \operatorname{Let} \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} b_R & b_M \\ 0 & b_S \end{bmatrix} \text{. Then} \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \delta\left(e_{11}\begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix}\right) \\ = \alpha_1(e_{11})\delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) + \delta(e_{11}) \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & m \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_R & b_M \\ 0 & b_S \end{bmatrix} \text{. So, } b_S = 0. \\ \text{On the other hand, } \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = c_2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{. } So, b_S = 0. \\ \text{On the other hand, } \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) + \delta\left(\begin{bmatrix} 0 & b \\ 0 & b_S \end{bmatrix} \text{. } c_{22} = \begin{bmatrix} 0 & b_M \\ 0 & b_S \end{bmatrix} \text{. } So, b_S = 0. \\ \text{On the other hand, } \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & b_M \\ 0 & 0 \end{bmatrix} \text{. } So, b_S = 0 \text{.} \\ \text{So, } b_R = 0. \text{ Thus } \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & b_M \\ 0 & 0 \end{bmatrix} \text{. } So, b_S = 0 \text{.} \\ \text{If we define } h: M \to M \text{ by } h(b) = b_M, \text{ then } h \text{ satisfies the property of (iii). } \\ \text{This means } \delta(ae_{11}) = \begin{bmatrix} f(a) & \phi_1(a)b_1 - b_1c - mg(c) + h(b) \\ 0 & 0 \end{bmatrix} \text{. } \\ \text{Add} \delta\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} f(a) & \phi_1(a)b_1 - b_1c - mg(c) + h(b) \\ 0 & g(c) \end{bmatrix} \text{.} \\ \text{Conversely, we define } \delta\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} f(a) & \phi_1(a)b_1 - b_1c - mg(c) + h(b) \\ 0 & g(c) \end{bmatrix} \text{.} \\ \text{Then } \alpha_1\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) \delta \delta\left(\begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}\right) + \delta\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) \left[\begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}\right] = \\ = \begin{bmatrix} \phi_1(a)\phi_1(a)b_1 - b_1c - mg(c) + h(b) \\ 0 & g(c) \end{bmatrix} \text{.} \\ + \begin{bmatrix} f(a) & \phi_1(a)b_1 - b_1c - mg(c) + h(b) \\ 0 & g(c) \end{bmatrix} \text{.} \\ \text{Here, } (1,0) \text{ component is } \phi_1(a)(b') + \phi_1(a)mg(c') + \theta_1(b)g(c') - m\psi_1(c)g(c') \\ \text{ and } A' = f(a)b' + \phi_1(a)h(b') + \phi_1(a)(b'(c' - mg(c)' + h(b)c'). \\ \text{Here, } (1,0) \text{ component is } \phi_1(a)f($$

 $\begin{array}{l} (2,2)\text{- component is }\psi_1(c)g(c^{'}) + g(c)c^{'} = g(cc^{'}).\\ (1,2)\text{-component is }\phi_1(a)\phi_1(a^{'})b_1 - \phi_1(a)b_1c^{'} - \phi_1(a)mg(c^{'}) + \phi_1(a)h(b^{'}) + \\\phi_1(a)mg(c^{'}) + \theta_1(b)g(c^{'}) - m\psi_1(c)g(c^{'}) + f(a)b^{'} + \phi_1(a)b_1c^{'} - b_1cc^{'} - mg(c)c^{'} + \\h(b)c^{'} = \phi_1(aa^{'})b_1 - b_1cc^{'} - mg(cc^{'}) + h(ab^{'} + bc^{'}).\\ \text{On the other hand, }\delta\left(\left[\begin{array}{cc}a & b\\0 & c\end{array}\right]\left[\begin{array}{cc}a^{'} & b^{'}\\0 & c^{'}\end{array}\right]\right) = \delta\left[\begin{array}{cc}aa^{'} & ab^{'} + bc^{'}\\0 & cc^{'}\end{array}\right] = \\\left[\begin{array}{cc}f(aa^{'}) & \phi_1(aa^{'})b_1 - b_1cc^{'} - mg(cc^{'}) + h(ab^{'} + bc^{'})\\0 & g(cc^{'})\end{array}\right].\\ \text{Therefore }\delta \text{ is an }\alpha_1\text{-derivation.} \end{array}\right]$

Corollary 3.2. In Theorem 3.1, let $\delta_1 : T \to T$ by $\delta_1\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} 0 & \phi_1(a)b_1 - b_1c \\ 0 & 0 \end{bmatrix}$ and $\delta_2 : T \to T$ by $\delta_2\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} f(a) & -mg(c) + h(b) \\ 0 & g(c) \end{bmatrix}$. Then δ_1 and δ_2 are α_1 -derivations.

Remark 3.3. In Corollary 3.2, $\delta_1 \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \begin{bmatrix} 0 & \phi_1(a)b_1 - b_1c \\ 0 & 0 \end{bmatrix} = \alpha_1 \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) \begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$. So, δ_1 is an inner α_1 -derivation for $\begin{bmatrix} 0 & b_1 \\ 0 & 0 \end{bmatrix}$.

Moreover, if m = 0, then α_1 is a trivial extension on T and every derivation is a sum of an inner α_1 -derivation and an extended derivation. This satisfies [2, Proposition 2.6] and [3, Theorem 3.2].

Theorem 3.4. Let $\alpha_2 : T \to T$ be a Type II homomorphism for some fixed element $m \in M$. Then $\delta : T \to T$ is an α_2 -derivation if and only if there exist (i) $g : M \to S$ is an additive map satisfying $\forall a \in R, b \in M, c \in S, g(ab) =$

(i) $g: M \to S$ is an additive map satisfying $\forall a \in N, b \in M, c \in S, g(ab) = \phi_2(a)g(b) \text{ and } g(bc) = g(b)c \text{ and}$

(ii) $h: S \to M$ is an additive map satisfying $\forall c, s \in S, h(cs) = \psi_2(c)h(s) + h(c)s + \psi_2(c)mc_1s$ for some $c_1 \in S$ such that for some $a_1 \in R$,

$$\delta\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}a_1a - \psi_2(c)a_1 & m\phi_2(a)c_1 + a_1b + mg(b) + h(c)\\0 & \phi_2(a)c_1 + g(b) - c_1c\end{array}\right],$$

where ϕ_2, ψ_2, θ_2 are maps given in Type II homomorphisms in Section 2.

Proof. Assume
$$\delta$$
 is an α_2 -derivation and α_2 be Type II homomorphism. So,
 $\alpha_2 \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = \begin{bmatrix} 1 & m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \psi_2(c) & 0 \\ 0 & \phi_2(a) \end{bmatrix} \begin{bmatrix} 1 & -m \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} \psi_2(c) & m\phi_2(a) - \psi_2(c)m \\ 0 & \phi_2(a) \end{bmatrix}$ for some $m \in M$.

$$\begin{split} & \operatorname{Let} \delta(e_{11}) = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} \cdot \operatorname{Then} \delta(e_{11}) = \delta(e_{11}e_{11}) = \alpha_2(e_{11})\delta(e_{11}) + \delta(e_{11})e_{11} = \\ & \begin{bmatrix} 0 & m \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} + \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix} e_{11} = \begin{bmatrix} a_1 & mc_1 \\ 0 & c_1 \end{bmatrix} \cdot \operatorname{Thus} \delta(e_{11}) = \begin{bmatrix} a_1 & mc_1 \\ 0 & c_1 \end{bmatrix} \\ & \operatorname{and} \delta(e_{22}) = \begin{bmatrix} -a_1 & -mc_1 \\ 0 & -c_1 \end{bmatrix} \cdot \\ & \operatorname{Let} \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} b_R & b_M \\ 0 & b_S \end{bmatrix} \cdot \operatorname{Then} \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = e_{22} \\ & = \alpha_2 \left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) \delta(e_{22}) + \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = e_{22} = 0 \begin{bmatrix} -a_1 & -mc_1 \\ 0 & -c_1 \end{bmatrix} + \begin{bmatrix} b_R & b_M \\ 0 & b_S \end{bmatrix} e_{22} \\ & = \begin{bmatrix} 0 & b_M \\ 0 & b_S \end{bmatrix} \cdot \operatorname{So} b_R = 0. \\ & \text{On the other hand,} \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \delta\left(e_{11}\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \alpha_2(e_{11})\delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) + \\ \delta(e_{11}) \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & mb_S \\ 0 & b_S \end{bmatrix} + \begin{bmatrix} 0 & a_1b \\ 0 & a_1b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & mb_S + a_1b \\ 0 & a_S \end{bmatrix} \cdot \operatorname{So} b_M = \\ a_1b + mb_S. \\ & \text{Therefore we can define } g: M \to S \text{ by } g(b) = b_S, \text{ where } \delta\left(\begin{bmatrix} 0 & b \\ 0 & b_S \end{bmatrix}\right) = \\ \begin{bmatrix} 0 & a_1b + mb_S \\ 0 & b_S \end{bmatrix} \cdot \\ & \text{Let } \delta(ae_{11}) = \begin{bmatrix} a_R & a_M \\ 0 & a_S \end{bmatrix} \cdot \operatorname{Then} \delta(ae_{11}) = \delta(ae_{11}e_{11}) = \alpha_2(ae_{11})\delta(e_{11}) + \\ \delta(ae_{11})e_{11} = \begin{bmatrix} 0 & ms_a \\ 0 & s_a \\ 0 & s_a \end{bmatrix} = \begin{bmatrix} a_R & m\phi_2(a)c_1 \\ 0 & \phi_2(a)c_1 \end{bmatrix} \cdot \\ & \text{Thus } a_S = \phi_2(a)c_1 \text{ and } a_M = \\ & m\phi_2(a)c_1 \\ 0 & \phi_2(a)c_1 \end{bmatrix} \cdot \\ & \text{Let } \delta(ce_{22}) = \begin{bmatrix} c_R & c_M \\ 0 & c_S \\ 0 & 0 \end{bmatrix} = \left[\begin{array}{c} e_1 & -mc_1 \\ 0 & -c_1 \\ 0 & -c_2 \\ 0 & -c_2 \\ 0 & -c_1 \\ \end{array} \right] + \begin{bmatrix} c_R & c_M \\ 0 & c_S \\ e_{22} = \\ & e_1 & -r_e m_1 + r_e m_c \\ 0 & -c_1 \\ 0 & -c_1 \\ 0 & -c_1 \\ 0 & -c_2 \\ 0 & -c_1 \\ \end{array} \right] + \begin{bmatrix} c_R & c_M \\ 0 & c_S \\ e_{22} = \\ & e_1 & -r_e a_1 + r_e m_c \\ 0 & -c_1 \\ 0 & -c_2 \\ \end{bmatrix} = \left[\begin{array}{c} -\psi_2(c)a_1 & c_M \\ 0 & -c_1 \\ 0 & -c_2 \\ \end{array} \right] = \left[\begin{array}{c} -e_1 a_1 & -mc_1 \\ 0 & c_S \\ 0 & -c_1 \\ \end{array} \right] + \begin{bmatrix} c_R & c_M \\ 0 & c_S \\ 0 & -c_1 \\ \end{array} \right] = \left[\begin{array}{c} -\psi_2(c)a_1 & c_M \\ 0 & -c_1 \\ \end{array} \right] + \left[\begin{array}{c} 0 & c_2 \\ 0 & -c_2 \\ \end{array} \right] = \left[\begin{array}{c} -\psi_2(c)a_1 & c_M \\ 0 & -c_2 \\ \end{array} \right] = \left[\begin{array}{c} -e_2 a_1 & c_M \\$$

Therefore we can define $h: S \to M$ by $h(c) = c_M$ where $\delta(ce_{22}) = \begin{bmatrix} -\psi_2(c)a_1 & c_M \\ 0 & -c_1c \end{bmatrix}$. Now $\forall a \in R, b \in M, c \in S, \delta\left(\begin{bmatrix} 0 & ab \\ 0 & 0 \end{bmatrix}\right) = \delta\left(ae_{11}\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) = \alpha_2(ae_{11})$ $\delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) + \delta(ae_{11})\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & m\phi_2(a) \\ 0 & \phi_2(a) \end{bmatrix} \begin{bmatrix} 0 & mg(b) + a_1b \\ 0 & \phi_2(a)c_1 \end{bmatrix} \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & m\phi_2(a)g(b) \\ 0 & \phi_2(a)g(b) \end{bmatrix} + \begin{bmatrix} 0 & a_1ab \\ 0 & 0 \end{bmatrix}$ $= \begin{bmatrix} 0 & m\phi_2(a)g(b) + a_1ab \\ 0 & \phi_2(a)g(b) \end{bmatrix}$ and $\delta\left(\begin{bmatrix} 0 & ab \\ 0 & 0 \end{bmatrix}\right) = \left[\begin{bmatrix} 0 & mg(ab) + a_1ab \\ 0 & g(ab) \end{bmatrix}$. Thus $g(ab) = \phi_2(a)g(b)$ Similarly, $\delta\left(\begin{bmatrix} 0 & bc \\ 0 & 0 \end{bmatrix}\right) = \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} ce_{22}\right)$ implies that g(bc) = g(b)c. Moreover, $\delta(cse_{22}) = \delta(ce_{22}se_{22}) = \alpha_2(ce_{22})\delta(se_{22}) + \delta(ce_{22})se_{22}$ $= \begin{bmatrix} \psi_2(c) & -\psi_2(c)m \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -\psi_2(s)a_1 & h(s) \\ 0 & -c_1s \end{bmatrix} + \begin{bmatrix} 0 & h(c)s \\ 0 & -c_1cs \end{bmatrix}$ $= \begin{bmatrix} -\psi_2(c)\psi_2(s)a_1 & \psi_2(c)h(s) + \psi_2(c)mc_1s + h(c)s \\ 0 & -c_1cs \end{bmatrix}$ and $\delta\begin{bmatrix} 0 & 0 \\ 0 & cs \end{bmatrix} = \left[\begin{bmatrix} -\psi_2(c)\psi_2(s)a_1 & \psi_2(c)h(s) + \psi_2(c)mc_1s + h(c)s \\ 0 & -c_1cs \end{bmatrix}$ and $\delta\begin{bmatrix} 0 & 0 \\ 0 & cs \end{bmatrix} = \left[\begin{bmatrix} -\psi_2(c)a_1 & h(cs) \\ 0 & -c_1cs \end{bmatrix} \right]$. Thus $h(cs) = \psi_2(c)h(s) + h(c)s + \psi_2(c)mc_1s$. Conversely, let $\delta\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) = \begin{bmatrix} a_{1a} - \psi_2(c)a_1 & B \\ 0 & -c_1cc \end{bmatrix}$, where $B = m\phi_2(a)c_1 + a_1b + mg(b) + h(c)$. Then we can check δ is an α_2 -derivation by a similar proof of Theorem 3.1.

Theorem 3.5. Let $\alpha_3 : T \to T$ be a Type III homomorphism. Then $\delta: T \to T$ is an α_3 -derivation if and only if there exist

(i) $f: R \to R$ is a ϕ_3 -derivation,

(ii) $g: M \to S$ is an additive map satisfying $\forall a \in R, b \in M, c \in S, g(ab) = \psi_3(a)g(b)$ and g(bc) = g(b)c and

(iii) $h: M \to M$ is an additive map satisfying $\forall a \in R, b \in M, c \in S, h(ab) = \phi_3(a)h(b) + \theta_3(a)g(b) + f(a)b$ and h(bc) = h(b)c such that for some $b_1 \in M, c_1 \in S,$

$$\delta\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}f(a)&\phi_3(a)b_1+\theta_3(a)c_1+h(b)-b_1c\\0&\psi_3(a)c_1+g(b)-c_1c\end{array}\right],$$

where ϕ_3, ψ_3, θ_3 are maps given in Type III homomorphisms in Section 2.

 $\begin{aligned} Sketch \ of \ proof. \ Let \ \delta(e_{11}) &= \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}. \ Then \ \delta(e_{11}) &= \begin{bmatrix} 0 & b_1 \\ 0 & c_1 \end{bmatrix} \ \text{and} \\ \delta(e_{22}) &= \begin{bmatrix} 0 & -b_1 \\ 0 & -c_1 \end{bmatrix}. \\ Let \ \delta(ae_{11}) &= \begin{bmatrix} a_R & a_M \\ 0 & a_S \end{bmatrix}. \ Then \ \delta(ae_{11}) &= \begin{bmatrix} a_R & \phi_3(a)b_1 + \theta_3(a)c_1 \\ 0 & \psi_3(a)c_1 \end{bmatrix}. \\ Thus \ a_S &= \psi_3(a)c_1 \ \text{and} \ a_M &= \phi_3(a)b_1 + \theta_3(a)c_1. \\ Define \ f : R \to R \ by \ f(a) &= a_R. \ Then \ f \ is \ an \ \phi_3\ \text{-derivation.} \\ Let \ \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) &= \begin{bmatrix} b_R & b_M \\ 0 & b_S \end{bmatrix}. \ Then \ \delta\left(\begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix}\right) &= \begin{bmatrix} 0 & b_M \\ 0 & b_S \end{bmatrix}. \ So, \\ b_R &= 0. \\ Define \ g : \ M \to S \ by \ g(b) &= b_S. \ Then \ g \ satisfies \ \forall a \in R, b \in M, c \in S, g(ab) &= \psi_3(a)g(b) \ \text{and} \ g(bc) &= g(b)c. \\ Define \ h : \ M \to M \ by \ h(b) &= b_M. \ Then \ h \ satisfies \ \forall a \in R, b \in M, c \in S, h(ab) &= \phi_3(a)h(b) + \theta_3(a)g(b) + f(a)b \ \text{and} \ h(bc) &= h(b)c. \\ Let \ \delta(ce_{22}) &= \begin{bmatrix} c_R & c_M \\ 0 & c_S \end{bmatrix}. \ Then \ \delta(ce_{22}) &= \begin{bmatrix} 0 & -b_1c \\ 0 & -c_1c \end{bmatrix}. \ This \ means \\ \delta\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) &= \begin{bmatrix} f(a) & \phi_3(a)b_1 + \theta_3(a)c_1 + h(b) - b_1c \\ 0 & \psi_3(a)c_1 + g(b) - c_1c \end{bmatrix}. \\ Conversely, \ let \ \delta\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) &= \begin{bmatrix} f(a) & \phi_3(a)b_1 + \theta_3(a)c_1 + h(b) - b_1c \\ 0 & \psi_3(a)c_1 + g(b) - c_1c \end{bmatrix}. \end{aligned}$

Then we can check δ is an α_3 -derivation by a similar proof of Theorem 3.1. \Box

Theorem 3.6. Let $\alpha_4 : T \to T$ be a Type IV homomorphism. Then $\delta : T \to T$ is an α_4 -derivation if and only if there exist

(i) $g: S \to S$ is a ψ_4 -derivation and

(ii) $h: S \to M$ is an additive map satisfying $\forall c, s \in S, h(cs) = \phi_4(c)h(s) + \theta_4(c)g(s) + h(c)s$ such that for some $a_1 \in R$,

$$\delta\left(\left[\begin{array}{cc}a&b\\0&c\end{array}\right]\right) = \left[\begin{array}{cc}a_1a - \phi_4(c)a_1&a_1b + h(c)\\0&g(c)\end{array}\right]$$

for some $a_1 \in R$, where ϕ_4, ψ_4, θ_4 are maps given in Type IV homomorphisms in Section 2.

Proof. Since the proof is similar to above theorems, we omit.

References

- P. N. Anh, L. Van Wyk, Automomorphism groups of generalized triangular matrix rings, Linear Algebra Appl., 434(2011), 1018-1026.
- [2] H. Ghahramani, Skew polynomial rings of formal triangular matrix rings, J.Algebra, 349, (2012), 201-216.
- [3] H. Ghahramani, A. Moussavi, Differential polynomial rings of triangular matrix rings, Bulletin of the Iranian Mathematical Society, 34(2), (2008), 71-96.

JANG HO CHUN AND JUNE WON PARK

- [4] M. N. Ghosseiri, The structure of (α, β)-derivations of triangular rings, Iranian Journal of Science & Techonology, Transaction A, 29(A3), (2005), 507-514.
- [5] R. Khazal, S. Dascalescu, L. Van Wyk, Isomomorphism of generalized triangular matrixrings and recovery of tiles, *Internat. J. Math. Sci.*, 2003(9), (2003), 533-538.

Jang Ho Chun Dept. of Math. Yeungnam University Kyongsan 712-749 KOREA *E-mail address*: jhchun@yu.ac.kr

June won Park Dept. of Undeclared Majors Kyungil University Kyongsan 712-701 KOREA *E-mail address*: jwpark@kiu.ac.kr