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ON GENERALIZED TRIANGULAR MATRIX RINGS

Jang Ho Chun and June Won Park

Abstract. For a generalized triangular matrix ring T =

[
R M
0 S

]
,

over rings R and S having only the idempotents 0 and 1 and over an

(R,S)-bimodule M , we characterize all homomorphisms α’s and all α-
derivations of T . Some of the homomorphisms are compositions of an

inner homomorphism and an extended or a twisted homomorphism.

1. Introduction

For R and S are rings with identity and M is an (R,S)-bimodule, we con-

sider a generalized triangular matrix ring T =

[
R M
0 S

]
. Automorphisms of

T were characterized when R and S have only the trivial idempotents 0 and
1(see[5]). Moreover, in case R and S are strongly indecomposable all auto-
morphisms of T are observed in [1]. In these cases, every automorphism is a
composition of an extended automorphism and an inner automorphism. In [4],
Ghosseiri determined the structure of (α, β)-derivations of T , where α and β
are automorphisms of T . Moreover, Ghahramani and Moussavi characterized
homomorphisms and derivations of T (see [2],[3]).

In this paper, we characterize all homomorphisms α’s of T and all α-derivations
of T , and get four types of homomorphisms of T , where one type is a composi-
tion of an inner homomorphism and an extended homomorphism and other one
type is a composition of an inner homomorphism and a twisted homomorphism.

Throughout this paper, for a generalized triangular matrix ring T , R and
S have only the trivial idempotents 0 and 1 and M is an (R,S)-bimodule.
Every endomorphism α means a ring homomorphism preserving identity i.e.,
α(1) = 1 and for a homomorphism α the additive map δ : T → T is called an

α-derivation if δ(tt
′
) = α(t)δ(t

′
) + δ(t)t

′
, (t, t

′ ∈ T ).
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2. Homomorphisms of T

In this section, we characterize that there exist only four types of homomor-
phisms of T . First we define four types of homomorphisms.

Type I. Let φ1 : R→ R and ψ1 : S → S be homomorphisms and θ1 : M →
M is a φ1, ψ1-bimodule homomorphism. For a fixed element m of M , if we
define α : T → T by

α

([
a b
0 c

])
=

[
φ1(a) θ1(b)

0 ψ1(c)

]
,

([
a b
0 c

]
∈ T

)
.

Then we can easily check that α is a homomorphism of T . Since

[
1 −m
0 1

]
is an inverse element of

[
1 m
0 1

]
,

[
1 m
0 1

]
induces an inner automorphism

innmt
, where mt stands for

[
1 m
0 1

]
.

If we define α1 = innmt
· α, then α1 is a homomorphism i.e.,

α1

([
a b
0 c

])
=

[
1 −m
0 1

] [
φ1(a) θ1(b)

0 ψ1(c)

] [
1 m
0 1

]
,

([
a b
0 c

]
∈ T

)
.

This homomorphism α1 is a composition of an inner automorphism and an
extended homomorphism.

Type II. Let φ2 : R → S and ψ2 : S → R be homomorphisms. For a fixed
element m of M , if we define α2 : T → T by

α2

([
a b
0 c

])
=

[
1 m
0 1

] [
ψ2(c) 0

0 φ2(a)

] [
1 −m
0 1

]
,

([
a b
0 c

]
∈ T

)
.

Then α2 is a homomorphism, which is a composition of an inner automorphism
and a twisted homomorphism.

Type III. Let φ3 : R→ R and ψ3 : R→ S be homomorphisms and θ3 : R→
M be an additive map such that θ3(aa

′
) = φ3(a)θ3(a

′
)+θ3(a)ψ3(a

′
)(a, a

′ ∈ R).
If we define α3 : T → T by

α3

([
a b
0 c

])
=

[
φ3(a) θ3(a)

0 ψ3(a)

]
,

([
a b
0 c

]
∈ T

)
.

Then α3 is a homomorphism.
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Type IV. Let φ4 : S → R and ψ4 : S → S be homomorphisms and
θ4 : S → M be an additive homomorphism such that θ4(cc

′
) = φ4(c)θ4(c

′
) +

θ4(c)ψ4(c
′
), (c, c

′ ∈ S). If we define α4 : T → T by

α4

([
a b
0 c

])
=

[
φ4(c) θ4(c)

0 ψ4(c)

]
,

([
a b
0 c

]
∈ T

)
.

Then α4 is a homomorphism.

For convenience, denote the idempotents e11 =

[
1 0
0 0

]
and e22 =

[
0 0
0 1

]
.

Also, 0 =

[
0 0
0 0

]
and 1 =

[
1 0
0 1

]
.

Lemma 2.1. If α : T → T is a homomorphism such that α(e11) =[
r1 m1

0 s1

]
, α(e22) =

[
r2 m2

0 s2

]
and α

([
0 b
0 0

])
=

[
rb mb

0 sb

]
for

b ∈M . Then
i) r1, s1, r2, s2 are 0 or 1 and rimi +misi = mi(i = 1, 2).
ii) r1 + r2 = 1,m1 +m2 = 0 and s1 + s2 = 1.
iii) rb = sb = 0, r1mb = mb and mbs1 = 0.
Proof.

i) Since α(e11) = (α(e11))2,

[
r1 m1

0 s1

]
=

[
r1 m1

0 s1

] [
r1 m1

0 s1

]
=[

r1
2 r1m1 +m1s1

0 s1
2

]
. Then r21 = r1, s21 = s1 and r1m1 + m1s1 = m1.

Similarly, r2
2 = r2, s2

2 = s2 and r2m2 + m2s2 = m2. Thus r1, s1, r2, s2 are 0
or 1.

ii) since 1 = α(1) = α(e11) + α(e22) =

[
r1 + r2 m1 +m2

0 s1 + s2

]
, r1 + r2 =

1,m1 +m2 = 0 and s1 + s2 = 1.

iii) By hypothesis, α

([
0 b
0 0

])
=

[
rb mb

0 sb

]
and α

([
0 b
0 0

])
=

α(e11)α

([
0 b
0 0

])
=

[
r1 m1

0 s1

] [
rb mb

0 sb

]
=

[
r1rb r1mb +m1sb

0 s1sb

]
.

So, r1rb = rb, s1sb = sb and r1mb +m1sb = mb.

On the other hand, 0 = α(0) = α

([
0 b
0 0

])
α(e11) =

[
rb mb

0 sb

]
[
r1 m1

0 s1

]
=

[
rbr1 rbm1 +mbs1

0 sbs1

]
. So, rbr1 = 0, sbs1 = 0 and rbm1 +

mbs1 = 0. Thus rb = sb = 0, r1mb = mb and mbs1 = 0. �
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Remark 2.2. From Lemma 2.1, we conclude that there are only four cases
of homomorphisms α’s which are depended on the values of ri, si,mi. The four
cases are followings ;

Case I. r1 = 1, r2 = 0, s1 = 0, s2 = 1. This implies m1 = m,m2 = −m.
Case II. r1 = 0, r2 = 1, s1 = 1, s2 = 0. This implies m1 = m,m2 = −m and

mb = 0.
Case III. r1 = 1, r2 = 0, s1 = 1, s2 = 0. This implies m1 = m2 = mb = 0.
Case IV. r1 = 0, r2 = 1, s1 = 0, s2 = 1. This implies m1 = m2 = mb = 0.

From Lemma 2.1 and Remark 2.2, we have the following theorems.
Theorem 2.3. Case I homomorphisms are Type I homomorphisms.

Proof. Since r1 = s2 = 1, r2 = s1 = 0, α(e11) =

[
1 m
0 0

]
, α(e22) =[

0 −m
0 1

]
and α

([
0 b
0 0

])
=

[
0 mb

0 0

]
. Thus we can define θ1 : M →

M by θ1(b) = mb.

Let α(ae11) =

([
ra ma

0 sa

])
. Then α(ae11) = α(ae11)α(e11) =

[
ra ma

0 sa

]
[

1 m
0 0

]
=

[
ra ram
0 0

]
. So, sa = 0 and ma = ram. Thus we can define

φ1 : R→ R by φ1(a) = ra.

Let α(ce22) =

([
rc mc

0 sc

])
. Then α (ce22) = α(e22)α(ce22)] =

[
0 −m
0 1

]
[
rc mc

0 sc

]
=

[
0 −msc
0 sc

]
. So, rc = 0 and mc = −msc. Thus we can define

ψ1 : S → S by ψ1(c) = sc.

Therefore, we conclude α

([
a b
0 c

])
=

[
ra ram+mb −msc
0 sc

]
=[

φ1(a) φ1(a)m+ θ1(b)−mψ1(c)
0 ψ1(c)

]
=

[
1 −m
0 1

] [
φ1(a) θ1(b)

0 ψ1(c)

] [
1 m
0 1

]
.

Moreover, for a ∈ R and b ∈M , α

([
0 ab
0 0

])
= α(ae11)α

([
0 b
0 0

])
=[

φ1(a) φ1(a)m
0 0

] [
0 θ1(b)
0 0

]
=

[
0 φ1(a)θ1(b)
0 0

]
and α

[
0 ab
0 0

]
=[

0 θ1(ab)
0 0

]
. So, θ1(ab) = φ1(a)θ1(b).

Similarly, for b ∈M and c ∈ S, θ1(bc) = θ1(b)ψ1(c). �

Theorem 2.4. Case II homomorphisms are Type II homomorphisms.
Proof. Since r1 = s2 = 0, r2 = s1 = 1 and rb = sb = mb = 0, α(e11) =[
0 m
0 1

]
, α(e22) =

[
1 −m
0 0

]
and α

([
0 b
0 0

])
= 0.
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Let α(ae11) =

[
ra ma

0 sa

]
. Then α(ae11) = α(e11)α(ae11) =

[
0 m
0 1

]
[
ra ma

0 sa

]
=

[
0 msa
0 sa

]
. So, ra = 0. Thus we can define φ2 : R → S by

φ2(a) = sa.

Let α (ce22)) =

[
rc mc

0 sc

]
. Then α(ce22) = α(ce22)α(e22) =

[
rc mc

0 sc

]
[

1 −m
0 0

]
=

[
rc −rcm
0 0

]
. So, sc = 0. Thus we can define ψ2 : S → R by

ψ2(c) = rc.

Therefore, we conclude α

([
a b
0 c

])
=

[
rc msa − rcm
0 sa

]
=

[
ψ2(c) mφ2(a)− ψ2(c)m

0 φ2(a)

]
=

[
1 m
0 1

] [
ψ2(c) 0

0 φ2(a)

] [
1 −m
0 1

]
.

�

Theorem 2.5. Case III homomorphisms are Type III homomorphisms.
Proof. Since r1 = s1 = 1, r2 = s2 = 0 and m1 = m2 = mb = 0, α(e11) =[
1 0
0 1

]
, α(e22) = 0 and α

([
0 b
0 0

])
= 0.

Let α(ae11) =

[
ra ma

0 sa

]
, then we can define φ3 : R → R by φ3(a) =

ra, ψ3 : R→ S by ψ3(a) = sa and θ3 : R→M by θ3(a) = ma.

Now, for a, a
′ ∈ R, α(aa

′
e11) = α(ae11)α(a

′
e11) =

[
φ3(a) θ3(a)

0 ψ3(a)

]
[
φ3(a

′
) θ3(a

′
)

0 ψ3(a
′
)

]
=

[
φ3(a)φ3(a

′
) φ3(a)θ3(a

′
) + θ3(a)ψ3(a

′
)

0 ψ3(a)ψ3(a
′
)

]
and α(aa

′
e11)

=

[
φ3(aa

′
) θ3(aa

′
)

0 ψ3(aa
′
)

]
. This means that φ3, ψ3 are homomorphisms and θ3

is additive, which satisfies θ3(aa
′
) = φ3(a)θ3(a

′
) + θ3(a)ψ3(a

′
). �

Theorem 2.6. Case IV homomorphisms are Type IV homomorphisms.
Proof. The proof is similar to the proof of Theorem 2.5. �

Remark 2.7. Case II, III and IV homomorphisms cannot be isomorphisms.
So, every automorphism of T is a Type I automorphism which is a composition
of an inner automorphism and an extended automorphism.



264 JANG HO CHUN AND JUNE WON PARK

3. Derivations of T

In this section, we will observe all α-derivations where α is a homomorphism
given in Section 2. Since there are four types of homomorphisms, we get four
types of α-derivations.

Theorem 3.1. Let α1 : T → T be a Type I homomorphism for some fixed
element m ∈M. Then δ : T → T is an α1- derivation if and only if there exist

(i) f : R→ R is a φ1-derivation,
(ii) g : S → S is a ψ1-derivation and
(iii) h : M → M is an additive map satisfying h(ab) = φ1(a)h(b) + f(a)b

and h(bc) = θ1(b)g(c) + h(b)c such that for some b1 ∈M,

δ

([
a b
0 c

])
=

[
f(a) φ1(a)b1 − b1c−mg(c) + h(b)

0 g(c)

]
,

where φ1, ψ1, θ1 are maps given in Type I homomorphisms in Section 2.

Proof. Since α1 is a Type I homomorphism, assume α1

([
a b
0 c

])
=[

1 −m
0 1

] [
φ1(a) θ1(b)

0 ψ1(c)

] [
1 m
0 1

]
=

[
φ1(a) φ1(a)m+ θ1(b)−mψ1(c)

0 ψ1(c)

]
for some m ∈M.

Let δ(e11) =

[
a1 b1
0 c1

]
. Then δ(e11) = α1(e11)δ(e11)+δ(e11)e11 =

[
1 m
0 0

]
[
a1 b1
0 c1

]
+

[
a1 b1
0 c1

]
e11 =

[
a1 b1 +mc1
0 0

]
+a1e11 =

[
2a1 b1 +mc1
0 0

]
.

So, c1 = a1 = 0. Thus δ(e11) =

[
0 b1
0 0

]
.

Since 0 = δ(1) = δ(e11) + δ(e22), δ(e22) =

[
0 −b1
0 0

]
.

(i) Let δ(ae11) =

[
aR aM
0 aS

]
. Then δ(ae11) = δ(e11ae11) = α1(e11)δ(ae11)+

δ(e11)(ae11) =

[
1 m
0 0

] [
aR aM
0 aS

]
+

[
0 b1
0 0

]
ae11 =

[
aR aM +maS
0 0

]
.

So, aS = 0. Thus δ(ae11) =

[
aR aM
0 0

]
.

On the other hand, δ(ae11) = δ(ae11e11) = α1(ae11)δ(e11) + δ(ae11)e11 =[
φ1(a) φ1(a)m

0 0

] [
0 b1
0 0

]
+

[
aR aM
0 0

]
e11 =

[
0 φ1(a)b1
0 0

]
+aRe11 =[

aR φ1(a)b1
0 0

]
. So, aM = φ1(a)b1. Thus δ(ae11) =

[
aR φ1(a)b1
0 0

]
.

If we define f : R → R by f(a) = aR, then we can easily check that f is a
φ1-derivation.
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(ii) Let δ(ce22) =

[
cR cM
0 cS

]
. Then δ(ce22) = δ(e22ce22) = α1(e22)δ(ce22)+

δ(e22)ce22 =

[
0 −m
0 1

] [
cR cM
0 cS

]
+

[
0 −b1
0 0

]
ce22 =

[
0 −mcS
0 cS

]
+[

0 −b1c
0 0

]
=

[
0 −mcS − b1c
0 cS

]
. So, cR = 0 and −b1c−mcS = cM . Thus

δ(ce22) =

[
0 −b1c−mcS
0 cS

]
.

If we define g : S → S by g(c) = cS , then g is a ψ1-derivation.

(iii) Let δ

([
0 b
0 0

])
=

[
bR bM
0 bS

]
. Then δ

([
0 b
0 0

])
= δ

(
e11

[
0 b
0 0

])
= α1(e11)δ

([
0 b
0 0

])
+δ(e11)

[
0 b
0 0

]
=

[
1 m
0 0

] [
bR bM
0 bS

]
+

[
0 b1
0 0

]
[

0 b
0 0

]
=

[
bR bM +mbS
0 0

]
. So, bS = 0.

On the other hand, δ

([
0 b
0 0

])
= δ

([
0 b
0 0

]
e22

)
= α1

([
0 b
0 0

])
δ(e22)+

δ

([
0 b
0 0

])
e22 =

[
0 θ1(b)
0 0

] [
0 −b1
0 0

]
+

[
bR bM
0 bS

]
e22 =

[
0 bM
0 bS

]
.

So, bR = 0. Thus δ

([
0 b
0 0

])
=

[
0 bM
0 0

]
.

If we define h : M →M by h(b) = bM , then h satisfies the property of (iii).

This means δ(ae11) =

[
f(a) φ1(a)b1

0 0

]
, δ(ce22) =

[
0 −b1c−mg(c)
0 g(c)

]
,

and δ

([
0 b
0 0

])
=

[
0 bM
0 0

]
. That is,

δ

([
a b
0 c

])
=

[
f(a) φ1(a)b1 − b1c−mg(c) + h(b)

0 g(c)

]
.

Conversely, we define δ

([
a b
0 c

])
=

[
f(a) φ1(a)b1 − b1c−mg(c) + h(b)

0 g(c)

]
.

Then α1

([
a b
0 c

])
δ

([
a

′
b
′

0 c
′

])
+ δ

([
a b
0 c

])[
a

′
b
′

0 c
′

]
=

[
φ1(a) φ1(a)m+ θ1(b)−mψ1(c)

0 ψ1(c)

] [
f(a

′
) φ1(a

′
)b1 − b1c

′ −mg(c
′
) + h(b

′
)

0 g(c
′
)

]
+

[
f(a) φ1(a)b1 − b1c−mg(c) + h(b)

0 g(c)

] [
a

′
b
′

0 c
′

]
=

[
φ1(a)f(a

′
) A

0 ψ1(c)g(c
′
)

]
+

[
f(a)a

′
A

′

0 g(c)c
′

]
, whereA = φ1(a)φ1(a

′
)b1−

φ1(a)b1c
′ − φ1(a)mg(c

′
) + φ1(a)h(b

′
) + φ1(a)mg(c

′
) + θ1(b)g(c

′
)−mψ1(c)g(c

′
)

and A
′

= f(a)b
′
+ φ1(a)b1c

′ − b1cc
′ −mg(c)c

′
+ h(b)c

′
.

Here, (1, 1)-component is φ1(a)f(a
′
) + f(a)a

′
= f(aa

′
).
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(2, 2)- component is ψ1(c)g(c
′
) + g(c)c

′
= g(cc

′
).

(1, 2)-component is φ1(a)φ1(a
′
)b1 − φ1(a)b1c

′ − φ1(a)mg(c
′
) + φ1(a)h(b

′
) +

φ1(a)mg(c
′
) + θ1(b)g(c

′
)−mψ1(c)g(c

′
) + f(a)b

′
+φ1(a)b1c

′ − b1cc
′ −mg(c)c

′
+

h(b)c
′

= φ1(aa
′
)b1 − b1cc

′ −mg(cc
′
) + h(ab

′
+ bc

′
).

On the other hand, δ

([
a b
0 c

] [
a

′
b
′

0 c
′

])
= δ

[
aa

′
ab

′
+ bc

′

0 cc
′

]
=[

f(aa
′
) φ1(aa

′
)b1 − b1cc

′ −mg(cc
′
) + h(ab

′
+ bc

′
)

0 g(cc
′
)

]
.

Therefore δ is an α1-derivation. �

Corollary 3.2. In Theorem 3.1, let δ1 : T → T by δ1

([
a b
0 c

])
=[

0 φ1(a)b1 − b1c
0 0

]
and δ2 : T → T by δ2

([
a b
0 c

])
=

[
f(a) −mg(c) + h(b)

0 g(c)

]
.

Then δ1 and δ2 are α1-derivations.

Remark 3.3. In Corollary 3.2, δ1

([
a b
0 c

])
=

[
0 φ1(a)b1 − b1c
0 0

]
=

α1

([
a b
0 c

])[
0 b1
0 0

]
−
[

0 b1
0 0

] [
a b
0 c

]
. So, δ1 is an inner α1-derivation

for

[
0 b1
0 0

]
.

Moreover, if m = 0, then α1 is a trivial extension on T and every derivation
is a sum of an inner α1-derivation and an extended derivation. This satisfies
[2, Proposition 2.6] and [3, Theorem 3.2].

Theorem 3.4. Let α2 : T → T be a Type II homomorphism for some fixed
element m ∈M. Then δ : T → T is an α2-derivation if and only if there exist

(i) g : M → S is an additive map satisfying ∀a ∈ R, b ∈ M, c ∈ S, g(ab) =
φ2(a)g(b) and g(bc) = g(b)c and

(ii) h : S → M is an additive map satisfying ∀c, s ∈ S, h(cs) = ψ2(c)h(s) +
h(c)s+ ψ2(c)mc1s for some c1 ∈ S such that for some a1 ∈ R,

δ

([
a b
0 c

])
=

[
a1a− ψ2(c)a1 mφ2(a)c1 + a1b+mg(b) + h(c)

0 φ2(a)c1 + g(b)− c1c

]
,

where φ2, ψ2, θ2 are maps given in Type II homomorphisms in Section 2.
Proof. Assume δ is an α2-derivation and α2 be Type II homomorphism. So,

α2

([
a b
0 c

])
=

[
1 m
0 1

] [
ψ2(c) 0

0 φ2(a)

] [
1 −m
0 1

]
=[

ψ2(c) mφ2(a)− ψ2(c)m
0 φ2(a)

]
for some m ∈M.
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Let δ(e11) =

[
a1 b1
0 c1

]
. Then δ(e11) = δ(e11e11) = α2(e11)δ(e11)+δ(e11)e11 =[

0 m
0 1

] [
a1 b1
0 c1

]
+

[
a1 b1
0 c1

]
e11 =

[
a1 mc1
0 c1

]
. Thus δ(e11) =

[
a1 mc1
0 c1

]
and δ(e22) =

[
−a1 −mc1

0 −c1

]
.

Let δ

([
0 b
0 0

])
=

[
bR bM
0 bS

]
. Then δ

([
0 b
0 0

])
= δ

([
0 b
0 0

]
e22

)
= α2

([
0 b
0 0

])
δ(e22)+δ

([
0 b
0 0

])
e22 = 0

[
−a1 −mc1

0 −c1

]
+

[
bR bM
0 bS

]
e22

=

[
0 bM
0 bS

]
. So, bR = 0.

On the other hand, δ

([
0 b
0 0

])
= δ

(
e11

[
0 b
0 0

])
= α2(e11)δ

([
0 b
0 0

])
+

δ(e11)

[
0 b
0 0

]
=

[
0 mbS
0 bS

]
+

[
0 a1b
0 0

]
=

[
0 mbS + a1b
0 bS

]
. So, bM =

a1b+mbS .

Therefore we can define g : M → S by g(b) = bS , where δ

([
0 b
0 0

])
=[

0 a1b+mbS
0 bS

]
.

Let δ(ae11) =

[
aR aM
0 aS

]
. Then δ(ae11) = δ(ae11e11)) = α2(ae11)δ(e11) +

δ(ae11)e11 =

[
0 msa
0 sa

] [
a1 mc1
0 c1

]
+

[
aR aM
0 aS

]
e11 =

[
0 msac1
0 sac1

]
+

aRe11 =

[
aR msac1
0 sac1

]
=

[
aR mφ2(a)c1
0 φ2(a)c1

]
. Thus aS = φ2(a)c1 and aM =

mφ2(a)c1.
On the other hand, δ(ae11) = δ(e11ae11) implies aR = a1a. Thus δ(ae11) =[
a1a mφ2(a)c1
0 φ2(a)c1

]
.

Let δ(ce22) =

[
cR cM
0 cS

]
. Then δ(ce22) = δ(ce22e22) = α2(ce22)δ(e22) +

δ(ce22)e22 =

[
rc −rcm
0 0

] [
−a1 −mc1

0 −c1

]
+

[
cR cM
0 cS

]
e22

=

[
−rca1 −rcmc1 + rcmc1

0 0

]
+

[
0 cM
0 cS

]
=

[
−rca1 cM

0 cS

]
=

[
−ψ2(c)a1 cM

0 cS

]
.

So, cR = −ψ2(c)a1.
On the other hand, δ(ce22) = δ(e22ce22) implies that cS = −c1c. Thus

δ(ce22) =

[
−ψ2(c)a1 cM

0 −c1c

]
.
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Therefore we can define h : S → M by h(c) = cM where δ(ce22) =[
−ψ2(c)a1 cM

0 −c1c

]
.

Now ∀a ∈ R, b ∈M, c ∈ S, δ
([

0 ab
0 0

])
= δ

(
ae11

[
0 b
0 0

])
= α2(ae11)

δ

([
0 b
0 0

])
+ δ(ae11)

[
0 b
0 0

]
=

[
0 mφ2(a)
0 φ2(a)

] [
0 mg(b) + a1b
0 g(b)

]
+[

a1a mφ2(a)c1
0 φ2(a)c1

] [
0 b
0 0

]
=

[
0 mφ2(a)g(b)
0 φ2(a)g(b)

]
+

[
0 a1ab
0 0

]
=

[
0 mφ2(a)g(b) + a1ab
0 φ2(a)g(b)

]
and δ

([
0 ab
0 0

])
=[

0 mg(ab) + a1ab
0 g(ab)

]
. Thus g(ab) = φ2(a)g(b)

Similarly, δ

([
0 bc
0 0

])
= δ

([
0 b
0 0

]
ce22

)
implies that g(bc) = g(b)c.

Moreover, δ(cse22) = δ(ce22se22) = α2(ce22)δ(se22) + δ(ce22)se22

=

[
ψ2(c) −ψ2(c)m

0

] [
−ψ2(s)a1 h(s)

0 −c1s

]
+

[
−ψ2(c)a1 h(c)

0 −c1c

]
se22

=

[
−ψ2(c)ψ2(s)a1 ψ2(c)h(s) + ψ2(c)mc1s

0 0

]
+

[
0 h(c)s
0 −c1cs

]
=

[
−ψ2(c)ψ2(s)a1 ψ2(c)h(s) + ψ2(c)mc1s+ h(c)s

0 −c1cs

]
and δ

[
0 0
0 cs

]
=[

−ψ2(cs)a1 h(cs)
0 −c1cs

]
. Thus h(cs) = ψ2(c)h(s) + h(c)s+ ψ2(c)mc1s.

Conversely, let δ

([
a b
0 c

])
=

[
a1a− ψ2(c)a1 B

0 φ2(a)c1 + g(b)− c1c

]
,

where B = mφ2(a)c1 + a1b + mg(b) + h(c). Then we can check δ is an α2-
derivation by a similar proof of Theorem 3.1. �

Theorem 3.5. Let α3 : T → T be a Type III homomorphism. Then
δ : T → T is an α3-derivation if and only if there exist

(i) f : R→ R is a φ3-derivation,
(ii) g : M → S is an additive map satisfying ∀a ∈ R, b ∈ M, c ∈ S, g(ab) =

ψ3(a)g(b) and g(bc) = g(b)c and
(iii) h : M →M is an additive map satisfying ∀a ∈ R, b ∈M, c ∈ S, h(ab) =

φ3(a)h(b)+θ3(a)g(b)+f(a)b and h(bc) = h(b)c such that for some b1 ∈M, c1 ∈
S,

δ

([
a b
0 c

])
=

[
f(a) φ3(a)b1 + θ3(a)c1 + h(b)− b1c

0 ψ3(a)c1 + g(b)− c1c

]
,

where φ3, ψ3, θ3 are maps given in Type III homomorphisms in Section 2.
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Sketch of proof. Let δ(e11) =

[
a1 b1
0 c1

]
. Then δ(e11) =

[
0 b1
0 c1

]
and

δ(e22) =

[
0 −b1
0 −c1

]
.

Let δ(ae11) =

[
aR aM
0 aS

]
. Then δ(ae11) =

[
aR φ3(a)b1 + θ3(a)c1
0 ψ3(a)c1

]
.

Thus aS = ψ3(a)c1 and aM = φ3(a)b1 + θ3(a)c1.
Define f : R→ R by f(a) = aR. Then f is an φ3-derivation.

Let δ

([
0 b
0 0

])
=

[
bR bM
0 bS

]
. Then δ

([
0 b
0 0

])
=

[
0 bM
0 bS

]
. So,

bR = 0.
Define g : M → S by g(b) = bS . Then g satisfies ∀a ∈ R, b ∈ M, c ∈

S, g(ab) = ψ3(a)g(b) and g(bc) = g(b)c.
Define h : M → M by h(b) = bM . Then h satisfies ∀a ∈ R, b ∈ M, c ∈

S, h(ab) = φ3(a)h(b) + θ3(a)g(b) + f(a)b and h(bc) = h(b)c.

Let δ(ce22) =

[
cR cM
0 cS

]
. Then δ(ce22) =

[
0 −b1c
0 −c1c

]
. This means

δ

([
a b
0 c

])
=

[
f(a) φ3(a)b1 + θ3(a)c1 + h(b)− b1c

0 ψ3(a)c1 + g(b)− c1c

]
.

Conversely, let δ

([
a b
0 c

])
=

[
f(a) φ3(a)b1 + θ3(a)c1 + h(b)− b1c

0 ψ3(a)c1 + g(b)− c1c

]
.

Then we can check δ is an α3-derivation by a similar proof of Theorem 3.1. �

Theorem 3.6. Let α4 : T → T be a Type IV homomorphism. Then δ :
T → T is an α4-derivation if and only if there exist

(i) g : S → S is a ψ4-derivation and
(ii) h : S → M is an additive map satisfying ∀c, s ∈ S, h(cs) = φ4(c)h(s) +

θ4(c)g(s) + h(c)s such that for some a1 ∈ R,

δ

([
a b
0 c

])
=

[
a1a− φ4(c)a1 a1b+ h(c)

0 g(c)

]
for some a1 ∈ R, where φ4, ψ4, θ4 are maps given in Type IV homomorphisms
in Section 2.

Proof. Since the proof is similar to above theorems, we omit. �
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