DOI QR코드

DOI QR Code

사용자간 동기오차와 증폭기의 비선형 왜곡을 동시에 고려한 두 상향링크 OFDMA 기법의 채널용량 비교 분석

Capacity Comparison of Two Uplink OFDMA Systems Considering Synchronization Error among Multiple Users and Nonlinear Distortion of Amplifiers

  • 투고 : 2014.03.05
  • 심사 : 2014.04.30
  • 발행 : 2014.05.31

초록

본 논문에서는 다중 사용자 간 시간 동기 오차에 강인한 상향링크 OFDMA (Orthogonal Frequency Division Multiple Access) 두 기법, 즉, ZCZ (Zero Correlation Zone) 코드 시간축 확산 OFDMA 기법과 시간동기오차에 강한 SC-FDMA (Single Carrier Frequency Division Mmultiple Access)기법의 채널용량을 비교한다. 보다 현실적인 성능을 비교하기 위해 사용자 간 시간 동기 오차 뿐 아니라 상향링크 OFDMA 신호 생성의 가장 큰 이슈인 PAPR (Peak-to-Average Power Ratio)에 의한 신호의 왜곡효과도 함께 고려한다. 사용자 간 시간 동기 오차에 의한 간섭이 존재하는 환경에서는 전력제어에 의해 증폭된 사용자들의 신호가 다른 사용자들의 신호에 큰 간섭으로 작용할 수 있다. 한편, 거리를 고려하여 증폭된 신호가 단말의 증폭기의 선형 증폭구간을 벗어나게 되면 신호의 왜곡이 발생하여 최종 성능의 저하를 발생시킬 수도 있다. 따라서, 기지국과 사용자 간의 거리만을 고려한 전력제어 방식이 아니라 최대 채널용량 성능을 갖게 하는 사용자 송신 전력 조합을 실험을 통해 찾는다. 즉, 사용자 단말의 전력 제한 수치와 사용자 시간 동기 오차의 최대범위 및 $E_b/N_0$ 등의 다양한 조합들에 대해 최대 채널용량 성능을 갖게 하는 송신전력 보정 계수(ASF: Adaptive Scaling Factor)을 실험을 통해 찾는다. 먼저, 송신전력 보정계수를 적용한 경우 두 상향링크 OFDMA 방식의 채널용량은 단순히 거리만을 고려한 전력제어 방식을 적용한 경우 즉, 송신전력 보정 계수=1인 경우에 비해 얼마나 높은 채널용량 성능을 가지는지 분석한다. 두 상향링크 OFDMA 방식의 채널용량 성능을 비교하면, 송신출력이 상대적으로 낮아도 되는 높은 $E_b/N_0$ 환경에서는 시간 동기 오차에 보다 강인한 특성을 가진 ZCZ 코드 시간축 확산 OFDMA 기법의 채널용량 성능이 좋고, 반대로 상대적으로 높은 송신출력을 요구하는 낮은 $E_b/N_0$ 환경에서는 낮은 PAPR 특성을 갖는 시간동기오차에 강한 SC-FDMA 기법의 채널용량 성능이 보다 우수함을 다양한 실험을 통해 보인다.

In this paper, we investigate channel capacity of two kinds of uplink OFDMA (Orthogonal Frequency Division Multiple Access) schemes, i.e. ZCZ (Zero Correlation Zone) code time-spread OFDMA and sparse SC-FDMA (Single Carrier Frequency Division Mmultiple Access) robust to access timing offset (TO) among multiple users. In order to reflect the practical condition, we consider not only access TO among multiple users but also peak to average power ratio (PAPR) which is one of hot issues of uplink OFDMA. In the case with access TO among multiple users, the amplified signal of users by power control might affect a severe interference to signals of other users. Meanwhile, amplified signal by considering distance between user and base station might be distorted due to the limit of amplifier and thus the performance might degrade. In order to achieve the maximum channel capacity, we investigate the combinations of transmit power so called ASF (adaptive scaling factor) by numerical simulations. We check that the channel capacity of the case with ASF increases compared to the case with considering only distance i.e. ASF=1. From the simulation results, In the case of high signal to noise ratio (SNR), ZCZ code time-spread OFDMA achieves higher channel capacity compared to sparse block SC-FDMA. On the other hand, in the case of low SNR, the sparse block SC-FDMA achieves better performance compared to ZCZ time-spread OFDMA.

키워드

참고문헌

  1. IEEE LAN/MAN Standards Committee, Broadband wireless access: IEEE MAN standard, IEEE 802.16a, 2003.
  2. H. Sari and G. Karam, "Orthogonal frequency-division multiple access and its application to CATV networks," Eur. Trans. Telecommun., vol. 9, no. 6, pp. 507-516, Dec. 1998. https://doi.org/10.1002/ett.4460090605
  3. I. Koffman and V. Roman, "Broadband wireless access solutions based on OFDM Access in IEEE 802.16," IEEE Commun. Mag., vol. 40, no. 4, pp. 96-103, Apr. 2002.
  4. M. Park, K. Ko, B. Park, and D. Hong, "Effects of asynchronous MAI on average SEP performance of OFDMA uplink systems over frequency-selective Rayleigh fading channels," IEEE Trans. Commun., vol. 58, no. 2, pp. 586-599, Feb. 2010. https://doi.org/10.1109/TCOMM.2010.02.050324
  5. S. Han and J. Lee "PAPR reduction of OFDM signals using a reduced complexity PTS technique," IEEE Signal Processing Lett., vol. 11, no. 11, pp. 887-891, Nov. 2004. https://doi.org/10.1109/LSP.2004.833490
  6. S. Tsai, Y. Lin, and CCJ. Kuo, "A precoded multiuser OFDM transceiver in time asynchronous environment," IEEE Trans. Commun., vol. 55, no. 10, pp. 1863-1866, Oct. 2007. https://doi.org/10.1109/TCOMM.2007.906388
  7. H. Wei, L. Yang, and L. Hanzo, "Time-and frequency-domain spreading assisted MC DS-CDMA using interference rejection spreading codes for quasi-synchronous communications," in Proc. IEEE VTC, Sept. 2004.
  8. H. Wei, L. Yang, and L. Hanzo, "Interferencefree broadband single and multicarrier DS-CDMA," IEEE Commun. Mag., vol. 43, no. 2, pp. 68-73, Feb. 2005.
  9. K. Raghunath and A. Chockalingam, "SIR analysis and interference cancellation in uplink OFDMA with large carrier frequency/timing offsets," IEEE Trans. Wirel. Commun., vol. 8, no. 5, pp. 2202-2208, May 2009. https://doi.org/10.1109/TWC.2009.071383
  10. S. H. Han and J. H. Lee, "An overview of peak-to average power ratio reduction techniques for multicarrier transmission," IEEE Trans. Wirel. Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005. https://doi.org/10.1109/MWC.2005.1421929
  11. S. Janaaththanan, C. Kasparis, and B. G. Evans, "A gradient based algorithm for PAPR reduction of OFDM using tone reservation technique," IEEE VTC, pp. 2977-2980, Singapore, May 2008.
  12. I. Baig and V. Jeoti, "Novel precoding based PAPR reduction schemes for localized OFDMA uplink of LTE-A," J. Telecommun., Electronic and Computer Eng., vol. 2 no. 1, Jan.-Jun. 2010.
  13. H. Myung, J. Lim, and D. Goodman, "Single carrier FDMA for uplink wireless transmission," IEEE Veh. Technol. Mag., vol. 1, no. 3, pp. 30-38, Sept. 2006. https://doi.org/10.1109/MVT.2006.307304
  14. K. Raghunath, and R. K. Mallik, "BER analysis of uplink OFDMA in the presence of carrier frequency and timing offsets on Rician fading channels," IEEE Trans. Veh. Technol., vol. 60, no. 9, Nov. 2011.
  15. M. Pun, M. Morelli, and C.-C. Kuo, "Maximum-likelihood synchronization and channel estimation for OFMDA uplink transmission," IEEE Trans. Commun., vol. 54, no. 4, Apr. 2006.
  16. M. Rim, "A random access scheme robust to timing offsets for uplink OFDMA systems," IEICE Trans. Commun., vol. E92-B, no. 10, pp. 3274-3276, Oct. 2009. https://doi.org/10.1587/transcom.E92.B.3274
  17. C. Ciochina, D. Castelain, D. Mottier, and H. Sari "New PAPR-preserving mapping methods for single-carrier FDMA with space frequency block codes," IEEE Trans. Wirel. Commun., vol. 8, no. 10, Oct. 2009.
  18. B. Kim and K, Choi, "Timing offsets-resilient OFDMA for asynchronous wireless Ad Hoc networks," in Proc. IEEE ICCCN, Jul. 2011.
  19. H. Su, J. Zhang, and P. Zhang, "ZCZ sequences-based frequency synchronization for interleaved OFDMA uplink," in Proc. IEEE VTC, May 2006.
  20. B. Kim and K. Choi, "Uplink OFDMA schemes for loose multi-user synchronization," ICTC, pp. 417-421, Sept. 2011.
  21. M. Park, K. Ko, B. Park, and D. Hong, "Effects of asynchronous MAI on average SEP performance of OFDMA uplink systems over frequency-selective Rayleigh fading channels," IEEE Trans. Commun., vol. 58, no. 2, pp. 586-599, Feb. 2010. https://doi.org/10.1109/TCOMM.2010.02.050324
  22. K. Choi and H. Liu, "Quasi-synchronous CDMA using properly scrambled Walsh codes as user spreading sequences," IEEE Trans. Veh. Technol., vol. 59, no. 7, pp. 3609-3617, Sept. 2010. https://doi.org/10.1109/TVT.2010.2050916
  23. K. Shimezawa, H. Harada, and H. Shirai, "Cyclic shifted-and-extended codes based on a quasi-orthogonal sequence for a CDM transmission scheme," IEICE Trans. Commun., vol. E89-B, no. 11, pp. 2998-3007, Nov. 2006. https://doi.org/10.1093/ietcom/e89-b.11.2998
  24. J. Scheim, A comparison of two fourth generation technologies: WiMAX and 3GPP-LTE, Communication & Signal Processing Ltd. White paper, Dec. 2006.
  25. 3GPP TS 36.201 V8.1.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA);LTE Physical Layer-General Description, Nov. 2007.