DOI QR코드

DOI QR Code

Efficient Adaptive Algorithms Based on Zero-Error Probability Maximization

영확률 최대화에 근거한 효율적인 적응 알고리듬

  • Kim, Namyong (Division of Electronic, Information and Communication Eng. Kangwon National University)
  • Received : 2014.01.25
  • Accepted : 2014.05.10
  • Published : 2014.05.31

Abstract

In this paper, a calculation-efficient method for weight update in the algorithm based on maximization of the zero-error probability (MZEP) is proposed. This method is to utilize the current slope value in calculation of the next slope value, replacing the block processing that requires a summation operation in a sample time period. The simulation results shows that the proposed method yields the same performance as the original MZEP algorithm while significantly reducing the computational time and complexity with no need for a buffer for error samples. Also the proposed algorithm produces faster convergence speed than the algorithm that is based on the error-entropy minimization.

이 논문에서는, 영확률을 최대화 (maximum zero-error probability, MZEP) 하도록 설계된 알고리듬에서 가중치 갱신에 쓰이는 기존의 블록 처리 방식의 합산 연산을 대신하여, 다음 기울기 계산에 현재 계산된 기울기를 활용할 수 있는 효율적인 가중치 갱신 계산 방식을 제안하였다. 실험 결과로부터, 제안한 방식은 원래의 MZEP 와 동일한 성능을 나타내면서도 오차 버퍼가 불필요하여 시스템의 복잡도를 감소시키며 연산 시간을 현저히 줄일 수 있다. 또한 제안한 알고리듬은 오차 엔트로피 (error-entropy)를 최소화하도록 설계된 알고리듬보다 우수한 수렴 속도를 지닌다.

Keywords

References

  1. J. Proakis, Digital Communications, 2nd edition, NY: McGraw-Hill, 1989.
  2. J. Joung, "MSE-based power saving method for relay systems," J. KICS, vol. 34, pp. 562-567, Jul. 2009.
  3. E. Parzen, "On the estimation of a probability density function and the mode," Ann. Math. Stat., vol. 33, no. 3, pp. 1065-1076, Sept. 1962. https://doi.org/10.1214/aoms/1177704472
  4. J. Principe, D. Xu, and J. W. Fisher III, Information Theoretic Learning in: S. Haykin, Unsupervised Adaptive Filtering, NY: Wiley, pp. 265-319, 2000.
  5. D. Erdogmus and J. Principe, "An entropy minimization algorithm for supervised training of nonlinear systems," IEEE Trans. Signal Process., vol. 50, pp. 1780-1786, Jul. 2002. https://doi.org/10.1109/TSP.2002.1011217
  6. I. Santamaria, D. Erdogmus, and J. Principe, "Entropy minimization for supervised digital communications channel equalization," IEEE Trans. Signal Process., vol. 50, pp. 1184-1192, May 2002. https://doi.org/10.1109/78.995074
  7. N. Kim, K. Jung, and L. Yang, "Maximization of zero-error probability for adaptive channel equalization," JCN, vol. 12. pp. 459-465, Oct. 2010.
  8. N. Kim, "Decision feedback equalizer based on maximization of zero-error probability," J. KICS, vol. 36, pp. 516-521, Aug. 2011. https://doi.org/10.7840/KICS.2011.36C.8.516
  9. M. Girolami and C. He, "Probability density estimation from optimally condensed data samples," IEEE Trans. Pattern Anal. Machine Intelligence, vol. 25, pp. 1253-1264, Oct. 2003. https://doi.org/10.1109/TPAMI.2003.1233899