DOI QR코드

DOI QR Code

Study on Low Delay and Adaptive Video Transmission for a Surveillance System in Visual Sensor Networks

비디오 센서 망에서의 감시 체계를 위한 저지연/적응형 영상전송 기술 연구

  • Lee, In-Woong (Yonsei University Department of Electrical and Electronic Engineering) ;
  • Kim, Hak-Sub (Yonsei University Department of Electrical and Electronic Engineering) ;
  • Oh, Tae-Geun (Yonsei University Department of Electrical and Electronic Engineering) ;
  • Lee, Sang-Hoon (Yonsei University Department of Electrical and Electronic Engineering)
  • Received : 2014.03.19
  • Accepted : 2014.05.08
  • Published : 2014.05.31

Abstract

Even if it is important to transmit high rate multimedia information without any transmission errors for surveillance systems, it is difficult to achieve error-free transmission due to infra-less adhoc networks. In order to reduce the transmission errors furthermore, additional signal overheads or retransmission of signals should be required, but they may lead to transmission delay. This paper represents a study on low delay and adaptive video transmission for the unmanned surveillance systems by developing system protocols. In addition, we introduce an efficient and adaptive control algorithm using system parameters for exploiting unmanned surveillance system properly over multi-channels.

비디오 센서 망을 이용한 무인 감시 체계에서는 고용량의 영상 정보를 왜곡 없이 전송하는 것이 중요하다. 하지만, 무선 채널의 특성상 왜곡 발생이 최소화 되도록 처리할 경우, 불필요한 전송 신호의 추가 또는 정보의 재전송 등으로 인해, 전송 자체의 지연을 초래하는 효과로 연결된다. 따라서 비디오 센서 망 기반의 감시 체계는 무인 체계와 운용자 사이 또는 무인체계들 사이에 고용량의 영상 정보를 압축하면서, 실시간 정보의 특성에 알맞도록 지연시간을 줄이고 시시각각 변화하는 감시 체계에 적합하게 전송할 수 있는 저지연/적응형 영상 전송 기술을 설계하는 것이 중요하다. 본 고에서는, 무인체계의 전체 시스템 프로토콜을 상기의 목표에 맞게 설계하고, 다양한 무선 환경에서 실현할 수 있는 영상전송 기술을 소개 한다. 원활한 무인체계 통신단말 운용을 위해 대용량의 다채널 영상 정보를 효율적이면서 지연이 적게 압축하고, 통신 상태 변화에 따라 유연하게 크로스 레이어 관점에서 영상의 정보를 계층적 부호화 (Layered Coding)를 기반으로 우선 순위에 기반하여 저지연 및 적응적으로 전송하는 기술을 소개한다.

Keywords

References

  1. P. D. Z. Varcheie and G.-A. Bilodeau, "Adaptive fuzzy particle filter tracker for a PTZ Camera in an IP surveillance system," IEEE Trans. Instrumentation and Measurement, vol. 60, pp. 354-371, Feb. 2011. https://doi.org/10.1109/TIM.2010.2084210
  2. R. K. Behera, P. Kharade, S. Yerva, P. Dhane, A. Jain, and K. Kutty, "Multi-Camera Based Surveillance System," WICT, pp. 102-108, Nov. 2012.
  3. S. Lee, I. Lee, S. Kim, S. Lee, and A. C. Bovik, "A pervasive network control algorithm for multicamera networks," IEEE J. Sensors, vol. 14, no. 4, pp. 1280-1294, Apr. 2014. https://doi.org/10.1109/JSEN.2013.2294743
  4. A. Hore and D. Ziou, "Image quality metrics: PSNR vs. SSIM," in Proc. IEEE ICPR, pp. 2366-2369, Istanbul, Aug. 2010.
  5. A. C. Bovik, ed., The Essential Guide to Image Processing, 1st Ed., Academic Press, 2009.
  6. J. Vaisey and A. Gersho, "Image compression with variable block size segmentation," IEEE Trans. Signal Process., vol. 40, no. 8, pp. 2040-2060, Aug. 1992. https://doi.org/10.1109/78.150005
  7. Joint Scalable Video Model - reference software: http:ip.hhi.de/imagecom_GI/savce/do wnloads/SVC-Reference-Software.htm, 2009.
  8. J. Park, H. Lee, S. Lee, and A.C. Bovik, "Optimal channel adaptation of scalable video over a multi-carrier based multi-cell environment," IEEE Trans. Multimedia, vol. 11, pp. 1062-1071, 2009. https://doi.org/10.1109/TMM.2009.2026084
  9. T. Oh, H. Lee, and S. Lee, "Dynamic bandwidth and carrier allocation for video broadcast/ multicast over multi-cell environments," Wirel. Personal Commun., vol. 69, pp. 1925-1945, 2013. https://doi.org/10.1007/s11277-012-0671-x
  10. Q. Huynh-Thu, M. Barkowsky, and P. L. Callet, "The importance of visual attention in improving the 3D-TV viewing experience: overview and new perspectives," IEEE Trans. Broadcasting, vol. 51, no. 2, pp. 421-431, Jun. 2011.
  11. L. Itti and C. Koch, "Computational modeling of visual attention," Nature Rev. Neuro-science, vol. 2, pp. 194-203, 2001. https://doi.org/10.1038/35058500
  12. H. Kim, S. Lee, and A. C. Bovik, "Saliency prediction on stereoscopic videos," IEEE Trans. Image Processing, vol. 23, no. 4, pp. 1476-1490, Apr. 2014. https://doi.org/10.1109/TIP.2014.2303640
  13. R. E. Kalman, "A new approach to linear filtering and prediction problems," J. Basic Engineering, vol. 82, pp. 35-45, 1960. https://doi.org/10.1115/1.3662552
  14. Z. Chen, "Bayesian filtering: From kalman filters to particle filters, and beyond," Statistics, vol. 182, no. 1, pp. 1-69, 2003.
  15. E. J. Jin, M. C. Park, J. H. Moon, and J. C. Kwon, "Frame bit-rate control method for low delay video communication," J. Broadcasting Eng., vol. 12, no. 6, pp. 574-584, Sept. 2007. https://doi.org/10.5909/JBE.2007.12.6.574
  16. E. J. Delp and O. R. Mitchell, "Image compression using block truncation coding," IEEE Trans. Commun., vol. 27, no. 9, pp. 1335-1342, Sept. 1979. https://doi.org/10.1109/TCOM.1979.1094560
  17. J. Wang, K. Min, and J. Chong, "A hybrid image coding in overdrive for motion blur reduction in LCD," in Proc. ICEC, pp. 263-270, China, Sept. 2007.
  18. J. M. Park, Y. J. Park, J. I. Park, Y. J. Won, and J. H. Jee, "QoS support on real - time image based virtual reality using active network technology in heterogeneous networks," J. Computing Sci. Eng., vol. 29, no. 2, pp. 334-336, Oct. 2002.
  19. L. Mannos and D. J. Sakrison, "The effects of a visual fidelity criterion on the encoding of images," IEEE Trans. Inf. Theory, pp. 525-535, vol. 20, no 4, 1974. https://doi.org/10.1109/TIT.1974.1055250
  20. K. Lee, A. K. Moorthy, S. Lee, and A. C. Bovik, "3D visual activity assessment based on natural scene statistics," IEEE Trans. Image Process., vol. 23, no. 1, pp. 450-465, Jan. 2014. https://doi.org/10.1109/TIP.2013.2290592
  21. "Smart eye pro - remote 3D eye tracking for research (http://www.sma rteye.se), SMART EYE PRO - 3D EYE TRACKING.
  22. "Stereoscopic (3-D imaging) database (http://g rouper.ieee.org/groups/3dhf/ or ftp://165.132.12 6.47/)," IEEE Standard for the Quality Assessment of Three Dimensional (3D) Displays, 3D Contents and 3D Devices based on Human Factors, 2012.
  23. H. S. Kim, J. C. Park, T. W. Kim, H. S. O, and S. H. Lee, "A saliency detection algorithm for 3D stereoscopic video," in Proc. KICIS, Korea, Feb. 2012.
  24. H. S. O, T. W. Kim, K. H. Lee, H. S. Kim, I. W. Lee, and S. H. Lee, "Relationship between visual attention region and perceived quality in stereoscopic 3-D video," in Proc. KICIS, Korea, Jan. 2013.
  25. M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking," IEEE Trans. Signal Process., vol. 50, no. 2, pp. 174-188, Feb. 2002. https://doi.org/10.1109/78.978374
  26. N. J. Gordon, D. J. Salmond, and A. F. M. Smith, "Novel approach to nonlinear/ non-Gaussian Bayesian state estimation," Radar and Signal Process., IEE Proc. F, vol. 140, no. 2, pp. 107-113, Apr. 1993. https://doi.org/10.1049/ip-f-2.1993.0015
  27. I. W. Lee, K. S. Cho, and S. H. Lee, "Analysis of scalable video coding for wireless communication systems," in Proc. KICIS, Korea, Sept. 2013.
  28. H. Kim and S. Lee, "Implementation of DWT-Based adaptive mode selection for LCD overdrive," IEEE Trans. Consumer Electron., vol. 57, no. 2, pp. 771-778, May 2011. https://doi.org/10.1109/TCE.2011.5955221
  29. Y. Wang, Z. Wu, and J. M. Boyce, "Modeling of transmission-loss induced distortion in decoded video," IEEE Trans. Circuits and Syst. for Video Technol., vol. 16, no. 6, pp. 716-732, Jun. 2006. https://doi.org/10.1109/TCSVT.2006.875203
  30. I. W. Lee, T. W. Kim, D. H. Lee, and S. H. Lee, "Traffic smoothing of large-scale mission critical system," in Proc. KICIS, Korea, Jul. 2012.
  31. N. McKeown, "OpenFlow: Enabling innovation in campus networks," ACM SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69-74, Apr. 2008.
  32. I. Lee, J. Park, S. Kim, T. Oh, and S. Lee, "Device-aware visual quality adaptation for wireless N-screen multicast systems," IEICE Trans. Commun., vol. E96-B, no. 12, pp. 3181-3189, Dec. 2013. https://doi.org/10.1587/transcom.E96.B.3181
  33. A. M. C. Correia, J. C. M. Silva, N. M. B. Souto, L. A. C. Silva, A. B. Boal, and A. B. Soares, "Multi-resolution broadcast/multicast systems for MBMS," IEEE Trans. Broadcasting, vol. 53, no. 1, pp. 224-234, Mar. 2007. https://doi.org/10.1109/TBC.2007.891705
  34. D. P. Palomar and M. Chiang, "A tutorial on decomposition methods for network utility maximization," IEEE J. Selected Areas in Commun., vol. 24, no. 8, pp. 1439-1451, Aug. 2006. https://doi.org/10.1109/JSAC.2006.879350
  35. M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, "Layering as optimization decomposition: A mathematical theory of network architectures," Proc. IEEE, vol. 95, no. 1, pp. 255-312, Jan. 2007.