DOI QR코드

DOI QR Code

Localization Algorithm for Moving Objects Based on Maximum Measurement Value in WPAN

WPAN에서 최대 측정거리 값을 이용한 이동객체 위치추정 보정 알고리즘

  • Received : 2013.11.18
  • Accepted : 2014.05.15
  • Published : 2014.05.31

Abstract

Concerns and demands for the Location Based Services (LBS) using Global Positioning System (GPS) and Wi-Fi are largely increased in the world in the present. In some experimental results, it was noted that many errors are frequently occurred when the distances between an anchor node and a mobile node acre measured in indoor localization environment of Wireless Personal Area Network (WPAN). In this paper, localization compensation algorithm based on maximum measurement value ($LCA_{MMV}$) for moving objects in WPAN is proposed, and the performance of the algorithm is analyzed by experiments on three scenarios for movement of mobile nodes. From the experiments, it was confirmed that the average localization accuracy of suggested algorithm was more increased than Symmetric Double-Sided Two-Way Ranging (SDS-TWR) and triangulation as average 40.9cm, 77.6cm and 6.3cm, respectively on scenario 1-3.

최근, 스마트폰의 GPS (Global Positioning System) 및 Wi-Fi를 이용한 위치기반서비스 (Location Based Services : LBS)에 대한 관심과 수요가 국내외에서 증가하고 있다. 위치추정 실험결과, WPAN (Wireless Personal Area Network)에서 실내 위치추정의 경우 고정노드와 이동노드간의 거리 측정 시 빈번하게 많은 오차 값이 발생함을 확인하였다. 본 논문에서는 최대 측정거리 값을 이용하여 이동객체의 위치추정 성능을 향상시킬 수 있는 위치추정 보정 알고리즘 ($LCA_{MMV}$)을 제안하고, 이동노드가 이동하는 상황을 3가지 시나리오로 구성하여 실험을 통해 성능을 분석하였다. 성능분석 결과, 제안한 알고리즘의 평균 위치추정 정확도는 SDS-TWR (Symmetric Double-Sided Two-Way Ranging)과 삼변측량법 보다 시나리오 1-3에서 각각 40.9cm, 77.6cm, 6.3cm 더 정확하게 측정됨을 확인하였다.

Keywords

References

  1. J. Li, et al., "A scalable location service for geographic ad hoc routing," in Proc. ACM MobiCom, pp. 120-130, Aug. 2000.
  2. P. Karn and C. Partridge, "Improving round-trip time estimates in reliable transport protocols," ACM Trans. Comput. Syst., vol. 9, no. 4, pp. 364-373, Nov. 1991. https://doi.org/10.1145/118544.118549
  3. G. Welch and G. Bishop, "An introduction to the Kalman Filter," UNC-Chapel Hill TR 95-041, Jul. 2006.
  4. J. Gonzalez, et al., "Mobile robot localization based on ultra-wide- band ranging: A particle filter approach," J. Robotics and Autonomous Systems, vol. 57, no. 5, pp. 496-507, May 2009. https://doi.org/10.1016/j.robot.2008.10.022
  5. M. Kim, H. Jeon, J. Yeom, and H. Park, "An improvement for location accuracy algorithm of moving indoor objects," JICS, vol. 11, no. 2, pp. 61-72, Apr. 2010.
  6. S. H. Woo, H. S. Jeon, K. H. Kim, and H. J. Park, "A design of indoor location tracking system for ubiquitous computing environment," JICS, vol. 7, no. 3, pp. 71-82, Jun. 2006.
  7. S. K. Kwon and D. M. Lee, "Performance analysis of compensation algorithm for localization using the equivalent distance rate and the Kalman Filter," J. KICS, vol. 37B, no. 5, pp. 370-376, May 2012.
  8. M. K. Jung, C. Y. Choi, and D. M. Lee, "The compensation algorithm for localization using the least-squares method in NLOS environment," J. KICS, vol. 37B, no. 4, pp. 309-316, Apr. 2012.