DOI QR코드

DOI QR Code

Forced nonlinear vibration by means of two approximate analytical solutions

  • Bayat, Mahmoud (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Bayat, Mahdi (Department of Civil Engineering, College of Engineering, Mashhad Branch, Islamic Azad University) ;
  • Pakar, Iman (Young Researchers and Elites Club, Mashhad Branch, Islamic Azad University)
  • Received : 2014.02.27
  • Accepted : 2014.04.25
  • Published : 2014.06.25

Abstract

In this paper, two approximate analytical methods have been applied to forced nonlinear vibration problems to assess a high accurate analytical solution. Variational Iteration Method (VIM) and Perturbation Method (PM) are proposed and their applications are presented. The main objective of this paper is to introduce an alternative method, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Some patterns are illustrated and compared with numerical solutions to show their accuracy. The results show the proposed methods are very efficient and simple and also very accurate for solving nonlinear vibration equations.

Keywords

References

  1. Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by hamiltonian approach", J. Vib., 13(4), 654-661.
  2. Bayat, M. and Pakar, I. (2011b), "Application of he's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
  3. Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
  4. Bayat, M. and Abdollahzade, G. (2011d), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Latin Am. J. Solid. Struct., 8(2), 163-181. https://doi.org/10.1590/S1679-78252011000200004
  5. Bayat, M. and Abdollahzadeh, G.R. (2011e), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4),429-443. https://doi.org/10.1590/S1679-78252011000400004
  6. Bayat, M. and Pakar, I, (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
  7. Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin Am. J. Solid. Struct., 9(2), 145-234 .
  8. Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
  9. Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
  10. Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
  11. Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach", Mech. Mach. Theor., 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
  12. Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
  13. Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
  14. Belendez, A., Hernandez, A., Belendez, T., Neipp, C. and Marquez, A. (2008), "Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method", Phys. Lett. A, 372(12), 2010-2016. https://doi.org/10.1016/j.physleta.2007.10.081
  15. Filobello-Nino, U., Vazquez-Leal, H. and Castaneda-Sheissa, R. (2012), "An approximate solution of blasius equation by using HPM method", Asian J. Math. Statistic., 5(2), 50-59. https://doi.org/10.3923/ajms.2012.50.59
  16. Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Curr. Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
  17. Ganji, D.D., Gorji, M., Soleimani, S. and Esmaeilpour, M. (2009), "Solution of nonlinear cubic-quintic Duffing oscillators using he's energy balance method", J. Zhejiang Univ.-Sci. A., 10(9), 1263-1268. https://doi.org/10.1631/jzus.A0820651
  18. He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
  19. He, J.H. (2006), "Some asymptotic methods for strongly nonlinear equations", Int. J. Modern Phys. B., 20 (10), 1141-1199. https://doi.org/10.1142/S0217979206033796
  20. He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Soliton. Fract., 34, 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
  21. He, J.H. (1999a), "Variational iteration method: a kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
  22. He, J.H. (1999b), "Some new approaches to duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique", Commun. Nonlin. Sci. Numer. Simulation, 4(1), 81-83. https://doi.org/10.1016/S1007-5704(99)90065-5
  23. He, J.H. (1999c), "Homotopy perturbation technique", Comput. Method. Appl. Mech. Eng., 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
  24. He, J. H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
  25. Javanmard, M., Bayat, M. and Ardakanin, A. (2013), "Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation", Steel Compos. Struct., 15(4), 439-449. https://doi.org/10.12989/scs.2013.15.4.439
  26. Kaya, M. and Demirbag, S.A. (2009), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos Soliton. Fract., 42(4), 1967-197. https://doi.org/10.1016/j.chaos.2009.03.143
  27. Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
  28. Pakar, I. and Bayat, M. (2011), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
  29. Pakar, I., Bayat, M. and Bayat, M (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vib., 14(1), 423-429.
  30. Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vib., 14(1), 216-224.
  31. Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
  32. Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
  33. Qian, Y., Ren, D., Lai, S. and Chen, S. (2012), "Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam", Commun. Nonlin. Sci. Numer. Simul., 17(4), 1947-1955. https://doi.org/10.1016/j.cnsns.2011.09.018
  34. Ren, Z.F. and Gui, W.K. (2011), "He's frequency formulation for nonlinear oscillators using a golden mean location", Comput. Math. Appl., 61(8), 1987-1990. https://doi.org/10.1016/j.camwa.2010.08.047
  35. Shou, D.H. (2009), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459. https://doi.org/10.1016/j.camwa.2009.03.034
  36. Wazwaz, A.M. (2007), "The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations", Comput. Math. Appl., 54(7-8), 933-939. https://doi.org/10.1016/j.camwa.2006.12.039
  37. Thomson, W.T. and Dahleh, M.D. (2000), Theory of Vibration with Application, Nelson Thomes Ltd., UK.
  38. Zeng, D.Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos Soliton. Fract., 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029

Cited by

  1. Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
  2. A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
  3. Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
  4. High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
  5. Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
  6. Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4198-2
  7. A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103