References
- Bayat, M. and Pakar, I. (2011a), "Nonlinear free vibration analysis of tapered beams by hamiltonian approach", J. Vib., 13(4), 654-661.
- Bayat, M. and Pakar, I. (2011b), "Application of he's energy balance method for nonlinear vibration of thin circular sector cylinder", Int. J. Phy. Sci., 6(23), 5564-5570.
- Bayat, M., Pakar, I. and Shahidi, M. (2011c), "Analysis of nonlinear vibration of coupled systems with cubic nonlinearity", Mechanika, 17(6), 620-629.
- Bayat, M. and Abdollahzade, G. (2011d), "Analysis of the steel braced frames equipped with ADAS devices under the far field records", Latin Am. J. Solid. Struct., 8(2), 163-181. https://doi.org/10.1590/S1679-78252011000200004
- Bayat, M. and Abdollahzadeh, G.R. (2011e), "On the effect of the near field records on the steel braced frames equipped with energy dissipating devices", Latin Am. J. Solid. Struct., 8(4),429-443. https://doi.org/10.1590/S1679-78252011000400004
- Bayat, M. and Pakar, I, (2012a), "Accurate analytical solution for nonlinear free vibration of beams", Struct. Eng. Mech., 43(3), 337-347. https://doi.org/10.12989/sem.2012.43.3.337
- Bayat, M., Pakar, I. and Domaiirry, G. (2012b), "Recent developments of some asymptotic methods and their applications for nonlinear vibration equations in engineering problems: a review", Latin Am. J. Solid. Struct., 9(2), 145-234 .
- Bayat, M., Pakar, I. and Bayat, M. (2013a), "Analytical solution for nonlinear vibration of an eccentrically reinforced cylindrical shell", Steel Compos. Struct., 14(5), 511-521. https://doi.org/10.12989/scs.2013.14.5.511
- Bayat, M. and Pakar, I. (2013b), "Nonlinear dynamics of two degree of freedom systems with linear and nonlinear stiffnesses", Earthq. Eng. Eng. Vib., 12(3), 411-420. https://doi.org/10.1007/s11803-013-0182-0
- Bayat, M. and Pakar, I. (2013c), "On the approximate analytical solution to non-linear oscillation systems", Shock Vib., 20(1), 43-52. https://doi.org/10.1155/2013/549213
- Bayat, M., Pakar, I. and Cveticanin, L. (2014a), "Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach", Mech. Mach. Theor., 77, 50-58. https://doi.org/10.1016/j.mechmachtheory.2014.02.009
- Bayat, M., Pakar, I. and Cveticanin, L. (2014b), "Nonlinear vibration of stringer shell by means of extended Hamiltonian approach", Arch. Appl. Mech., 84(1), 43-50. https://doi.org/10.1007/s00419-013-0781-2
- Bayat, M., Bayat, M. and Pakar, I. (2014c), "Nonlinear vibration of an electrostatically actuated microbeam", Latin Am. J. Solid. Struct., 11(3), 534-544. https://doi.org/10.1590/S1679-78252014000300009
- Belendez, A., Hernandez, A., Belendez, T., Neipp, C. and Marquez, A. (2008), "Higher accuracy analytical approximations to a nonlinear oscillator with discontinuity by He's homotopy perturbation method", Phys. Lett. A, 372(12), 2010-2016. https://doi.org/10.1016/j.physleta.2007.10.081
- Filobello-Nino, U., Vazquez-Leal, H. and Castaneda-Sheissa, R. (2012), "An approximate solution of blasius equation by using HPM method", Asian J. Math. Statistic., 5(2), 50-59. https://doi.org/10.3923/ajms.2012.50.59
- Fu, Y., Zhang, J. and Wan, L. (2011), "Application of the energy balance method to a nonlinear oscillator arising in the microelectromechanical system (MEMS)", Curr. Appl. Phys., 11(3), 482-485. https://doi.org/10.1016/j.cap.2010.08.037
- Ganji, D.D., Gorji, M., Soleimani, S. and Esmaeilpour, M. (2009), "Solution of nonlinear cubic-quintic Duffing oscillators using he's energy balance method", J. Zhejiang Univ.-Sci. A., 10(9), 1263-1268. https://doi.org/10.1631/jzus.A0820651
- He, J.H. (2002), "Preliminary report on the energy balance for nonlinear oscillations", Mech. Res. Commun., 29(2-3), 107-111. https://doi.org/10.1016/S0093-6413(02)00237-9
- He, J.H. (2006), "Some asymptotic methods for strongly nonlinear equations", Int. J. Modern Phys. B., 20 (10), 1141-1199. https://doi.org/10.1142/S0217979206033796
- He, J.H. (2007), "Variational approach for nonlinear oscillators", Chaos Soliton. Fract., 34, 1430-1439. https://doi.org/10.1016/j.chaos.2006.10.026
- He, J.H. (1999a), "Variational iteration method: a kind of nonlinear analytical technique: some examples", Int. J. Nonlin. Mech., 34(4), 699-708. https://doi.org/10.1016/S0020-7462(98)00048-1
- He, J.H. (1999b), "Some new approaches to duffing equation with strongly and high order nonlinearity (II) parameterized perturbation technique", Commun. Nonlin. Sci. Numer. Simulation, 4(1), 81-83. https://doi.org/10.1016/S1007-5704(99)90065-5
- He, J.H. (1999c), "Homotopy perturbation technique", Comput. Method. Appl. Mech. Eng., 178(3-4), 257-262. https://doi.org/10.1016/S0045-7825(99)00018-3
- He, J. H. (2010), "Hamiltonian approach to nonlinear oscillators", Phys. Lett. A, 374(23), 2312-2314. https://doi.org/10.1016/j.physleta.2010.03.064
- Javanmard, M., Bayat, M. and Ardakanin, A. (2013), "Nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation", Steel Compos. Struct., 15(4), 439-449. https://doi.org/10.12989/scs.2013.15.4.439
- Kaya, M. and Demirbag, S.A. (2009), "Application of parameter expansion method to the generalized nonlinear discontinuity equation", Chaos Soliton. Fract., 42(4), 1967-197. https://doi.org/10.1016/j.chaos.2009.03.143
- Nayfeh, A.H. (1973), Perturbation Methods, Wiley Online Library.
- Pakar, I. and Bayat, M. (2011), "Analytical solution for strongly nonlinear oscillation systems using energy balance method", Int. J. Phy. Sci., 6(22), 5166-5170.
- Pakar, I., Bayat, M. and Bayat, M (2012a), "On the approximate analytical solution for parametrically excited nonlinear oscillators", J. Vib., 14(1), 423-429.
- Pakar, I. and Bayat, M. (2012b), "Analytical study on the non-linear vibration of Euler-Bernoulli beams", J. Vib., 14(1), 216-224.
- Pakar, I. and Bayat, M. (2013a), "An analytical study of nonlinear vibrations of buckled Euler-Bernoulli beams", Acta Physica Polonica A, 123(1), 48-52. https://doi.org/10.12693/APhysPolA.123.48
- Pakar, I. and Bayat, M. (2013b), "Vibration analysis of high nonlinear oscillators using accurate approximate methods", Struct. Eng. Mech., 46(1), 137-151. https://doi.org/10.12989/sem.2013.46.1.137
- Qian, Y., Ren, D., Lai, S. and Chen, S. (2012), "Analytical approximations to nonlinear vibration of an electrostatically actuated microbeam", Commun. Nonlin. Sci. Numer. Simul., 17(4), 1947-1955. https://doi.org/10.1016/j.cnsns.2011.09.018
- Ren, Z.F. and Gui, W.K. (2011), "He's frequency formulation for nonlinear oscillators using a golden mean location", Comput. Math. Appl., 61(8), 1987-1990. https://doi.org/10.1016/j.camwa.2010.08.047
- Shou, D.H. (2009), "The homotopy perturbation method for nonlinear oscillators", Comput. Math. Appl., 58(11-12), 2456-2459. https://doi.org/10.1016/j.camwa.2009.03.034
- Wazwaz, A.M. (2007), "The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion equations", Comput. Math. Appl., 54(7-8), 933-939. https://doi.org/10.1016/j.camwa.2006.12.039
- Thomson, W.T. and Dahleh, M.D. (2000), Theory of Vibration with Application, Nelson Thomes Ltd., UK.
- Zeng, D.Q. (2009), "Nonlinear oscillator with discontinuity by the max-min approach", Chaos Soliton. Fract., 42(5), 2885-2889. https://doi.org/10.1016/j.chaos.2009.04.029
Cited by
- Study of complex nonlinear vibrations by means of accurate analytical approach vol.17, pp.5, 2014, https://doi.org/10.12989/scs.2014.17.5.721
- A novel approximate solution for nonlinear problems of vibratory systems vol.57, pp.6, 2016, https://doi.org/10.12989/sem.2016.57.6.1039
- Nonlinear vibration of conservative oscillator's using analytical approaches vol.59, pp.4, 2016, https://doi.org/10.12989/sem.2016.59.4.671
- High conservative nonlinear vibration equations by means of energy balance method vol.11, pp.1, 2016, https://doi.org/10.12989/eas.2016.11.1.129
- Analytical study of nonlinear vibration of oscillators with damping vol.9, pp.1, 2015, https://doi.org/10.12989/eas.2015.9.1.221
- Nonlinear resonant behaviors of embedded thick FG double layered nanoplates via nonlocal strain gradient theory pp.1432-1858, 2018, https://doi.org/10.1007/s00542-018-4198-2
- A nonlocal strain gradient theory for nonlinear free and forced vibration of embedded thick FG double layered nanoplates vol.68, pp.1, 2018, https://doi.org/10.12989/sem.2018.68.1.103