DOI QR코드

DOI QR Code

Synthesis of Pd/TiO2 Catalyst for Aerobic Benzyl Alcohol Oxidation

호기성 벤질 알코올 산화반응을 위한 팔라듐 이산화티타늄 촉매 개발

  • Cho, Tae Jun (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology)
  • 조태준 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Received : 2014.03.21
  • Accepted : 2014.04.01
  • Published : 2014.06.10

Abstract

$Pd/TiO_2$ particles were prepared by wet impregnation for aerobic benzyl alcohol oxidation. Catalysts were prepared by the impregnation of 10 wt% palladium on $TiO_2$ after calcination at various temperatures. The surface areas of the catalysts were changed with calcination temperature. The catalyst calcined at $300^{\circ}C$ possessed the highest surface areas. Catalytic activity of the prepared samples was examined for aerobic benzyl alcohol oxidation. Among the samples, $Pd/TiO_2$ calcined at $300^{\circ}C$ showed the highest catalytic activity. Moreover, the catalysts with various Pd concentrations from 5 wt% to 15 wt% were prepared to investigate an optimum catalyst. 10 wt% $Pd/TiO_2$ was the most active in this reaction due to its higher surface areas and metal dispersion.

호기성 벤질 알코올 산화반응용 촉매로 팔라듐이 담지된 이산화티타늄 입자를 제조하였다. 우선 합성한 이산화티타늄입자에 10 wt% 팔라듐을 함침한 후, 다양한 온도에서 소성하여 촉매를 제조하였다. 촉매의 비표면적은 소성온도에 따라 변하였는데, $300^{\circ}C$에서 소성한 촉매의 비표면적이 가장 높게 측정되었다. 제조된 촉매의 반응 결과 $300^{\circ}C$에서 소성한 입자가 가장 우수한 반응성능을 보였다. 또한 팔라듐의 농도를 5 wt%에서 15 wt%까지 조절하여 함침한 후 $300^{\circ}C$에서 소성하여 촉매를 합성하였다. 팔라듐의 농도가 10 wt%인 $Pd/TiO_2$ 입자가 벤질알코올 산화반응에 최적의 촉매로 규명되었다. 이는 상대적으로 높은 촉매의 비표면적 및 팔라듐 분산도에 기인한다.

Keywords

References

  1. R. A. Sheldon, I. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000). https://doi.org/10.1016/S0920-5861(99)00317-X
  2. R. A. Sheldon, I. W. C. E. Arends, G. J. T. Brink, and A. Dijksman, Green, catalytic oxidations of alcohols, Acc. Chem. Res., 35, 774-781 (2002). https://doi.org/10.1021/ar010075n
  3. R. A. Sheldon and J. K. Kochi, Metal-catalyzed oxidation of organic compounds, Academic Press, New York (1981).
  4. R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980). https://doi.org/10.1021/jo01298a066
  5. J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961). https://doi.org/10.1021/jo01070a009
  6. D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970). https://doi.org/10.1021/jo00835a101
  7. R. J. Highet and W. C. Wildman, Solid manganese dioxide as an oxidizing agent, J. Am. Chem. Soc., 77, 4399-4401 (1955). https://doi.org/10.1021/ja01621a062
  8. F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981). https://doi.org/10.1016/S0040-4039(01)90402-2
  9. K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000). https://doi.org/10.1021/ja001325i
  10. T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, Palladium (II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, J. Org. Chem., 64, 6750-6755 (1999). https://doi.org/10.1021/jo9906734
  11. M. Hasan, M. Musawir, P. N. Davey, and I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate, J. Mol. Catal. A Chem., 180, 77-84 (2002). https://doi.org/10.1016/S1381-1169(01)00410-1
  12. K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
  13. A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). https://doi.org/10.1002/anie.200500382
  14. W. Liu and M. Flytzani-Stephanopoulos, Cu-and Ag-modified cerium oxide catalysts for methane oxidation, J. Catal., 153, 304-316 (1995). https://doi.org/10.1006/jcat.1995.1132
  15. A. Arcadi and S. Di Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004). https://doi.org/10.2174/1385272043370564
  16. Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem., B., 106, 9463-9483 (2002).
  17. P. Vonmatt and A. Pfaltz, Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd catalyzed allylic substitution, Angew. Chem. Int. Ed., 32, 566-568 (1993). https://doi.org/10.1002/anie.199305661
  18. D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005). https://doi.org/10.1002/anie.200500766
  19. A. Fujishima, K. Hashimoto, and T. Watanabe, $TiO_2$ Photocatalysis, fundamentals and applications, Bkc Inc., Tokyo (1999).
  20. M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, Influence of ceria on Pd activity for the CO + $O_2$ reaction, J. Catal., 187, 474-485 (1999). https://doi.org/10.1006/jcat.1999.2624
  21. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Nature, 418, 164-167 (2002). https://doi.org/10.1038/nature00893
  22. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, High-performance nanocatalysts for single-step hydrogenations, Acc. Chem. Res., 36, 20-30 (2003). https://doi.org/10.1021/ar990017q
  23. R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004). https://doi.org/10.1021/nl0495256
  24. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 6, 692-697 (2007). https://doi.org/10.1038/nmat1957
  25. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett., 7, 3097-3101 (2007). https://doi.org/10.1021/nl0716000
  26. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen, Angew. Chem, Int. Ed., 47, 3588-3591 (2008). https://doi.org/10.1002/anie.200800073

Cited by

  1. Preparation of Pd/TiO2 Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1044
  2. (C10H8N2H)2Cr2O7를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구 vol.28, pp.5, 2014, https://doi.org/10.14478/ace.2017.1063
  3. C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘 vol.19, pp.8, 2014, https://doi.org/10.5762/kais.2018.19.8.378