References
- R. A. Sheldon, I. Arends, and A. Dijksman, New developments in catalytic alcohol oxidations for fine chemicals synthesis, Catal. Today, 57, 157-166 (2000). https://doi.org/10.1016/S0920-5861(99)00317-X
- R. A. Sheldon, I. W. C. E. Arends, G. J. T. Brink, and A. Dijksman, Green, catalytic oxidations of alcohols, Acc. Chem. Res., 35, 774-781 (2002). https://doi.org/10.1021/ar010075n
- R. A. Sheldon and J. K. Kochi, Metal-catalyzed oxidation of organic compounds, Academic Press, New York (1981).
- R. V. Stevens, K. T. Chapman, and H. N. Weller, Convenient and inexpensive procedure for oxidation of secondary alcohols to ketones, J. Org. Chem., 45, 2030-2032 (1980). https://doi.org/10.1021/jo01298a066
- J. R. Holum, Study of the chromium (VI) oxide-pyridine complex, J. Org. Chem., 26, 4814-4816 (1961). https://doi.org/10.1021/jo01070a009
- D. G. Lee and U. A. Spitzer, Aqueous dichromate oxidation of primary alcohols, J. Org. Chem., 35, 3589-3590 (1970). https://doi.org/10.1021/jo00835a101
- R. J. Highet and W. C. Wildman, Solid manganese dioxide as an oxidizing agent, J. Am. Chem. Soc., 77, 4399-4401 (1955). https://doi.org/10.1021/ja01621a062
- F. M. Menger and C. Lee, Synthetically useful oxidations at solid sodium permanganate surfaces, Tetrahedron Lett., 22, 1655-1656 (1981). https://doi.org/10.1016/S0040-4039(01)90402-2
- K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000). https://doi.org/10.1021/ja001325i
- T. Nishimura, T. Onoue, K. Ohe, and S. Uemura, Palladium (II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen, J. Org. Chem., 64, 6750-6755 (1999). https://doi.org/10.1021/jo9906734
- M. Hasan, M. Musawir, P. N. Davey, and I. V. Kozhevnikov, Oxidation of primary alcohols to aldehydes with oxygen catalysed by tetra-n-propylammonium perruthenate, J. Mol. Catal. A Chem., 180, 77-84 (2002). https://doi.org/10.1016/S1381-1169(01)00410-1
- K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: a highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004). https://doi.org/10.1021/ja0488683
- A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005). https://doi.org/10.1002/anie.200500382
- W. Liu and M. Flytzani-Stephanopoulos, Cu-and Ag-modified cerium oxide catalysts for methane oxidation, J. Catal., 153, 304-316 (1995). https://doi.org/10.1006/jcat.1995.1132
- A. Arcadi and S. Di Giuseppe, Recent applications of gold catalysis in organic synthesis, Curr. Org. Chem., 8, 795-812 (2004). https://doi.org/10.2174/1385272043370564
- Z. Q. Tian, B. Ren, and D. Y. Wu, Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures, J. Phys. Chem., B., 106, 9463-9483 (2002).
- P. Vonmatt and A. Pfaltz, Chiral phosphinoaryldihydrooxazoles as ligands in asymmetric catalysis: Pd catalyzed allylic substitution, Angew. Chem. Int. Ed., 32, 566-568 (1993). https://doi.org/10.1002/anie.199305661
- D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis, Angew. Chem. Int. Ed., 44, 7852-7872 (2005). https://doi.org/10.1002/anie.200500766
-
A. Fujishima, K. Hashimoto, and T. Watanabe,
$TiO_2$ Photocatalysis, fundamentals and applications, Bkc Inc., Tokyo (1999). -
M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, Influence of ceria on Pd activity for the CO +
$O_2$ reaction, J. Catal., 187, 474-485 (1999). https://doi.org/10.1006/jcat.1999.2624 - Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control, Nature, 418, 164-167 (2002). https://doi.org/10.1038/nature00893
- J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, High-performance nanocatalysts for single-step hydrogenations, Acc. Chem. Res., 36, 20-30 (2003). https://doi.org/10.1021/ar990017q
- R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004). https://doi.org/10.1021/nl0495256
- S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Shaping binary metal nanocrystals through epitaxial seeded growth, Nat. Mater., 6, 692-697 (2007). https://doi.org/10.1038/nmat1957
- K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Platinum nanoparticle shape effects on benzene hydrogenation selectivity, Nano Lett., 7, 3097-3101 (2007). https://doi.org/10.1021/nl0716000
- C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, A general approach to the size-and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen, Angew. Chem, Int. Ed., 47, 3588-3591 (2008). https://doi.org/10.1002/anie.200800073
Cited by
- Preparation of Pd/TiO2 Catalyst Using Room Temperature Ionic Liquids for Aerobic Benzyl Alcohol Oxidation vol.26, pp.3, 2015, https://doi.org/10.14478/ace.2015.1044
- (C10H8N2H)2Cr2O7를 이용한 치환 벤질 알코올류의 산화반응과 반응속도에 관한 연구 vol.28, pp.5, 2014, https://doi.org/10.14478/ace.2017.1063
- C9H7NHCrO3Cl에 의한 알코올류의 산화반응에서 속도론과 메카니즘 vol.19, pp.8, 2014, https://doi.org/10.5762/kais.2018.19.8.378