DOI QR코드

DOI QR Code

Electromagnetic Interference Shielding Characteristics of Electroless Nickel Plated Carbon Nanotubes

무전해 니켈 도금된 탄소나노튜브의 전자파 차폐 특성

  • Kim, Do Young (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Yun, Kug Jin (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Lee, Young-Seak (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 김도영 (충남대학교 바이오응용화학과) ;
  • 윤국진 (충남대학교 바이오응용화학과) ;
  • 이영석 (충남대학교 바이오응용화학과)
  • Received : 2014.03.10
  • Accepted : 2014.04.16
  • Published : 2014.06.10

Abstract

In this study, multi-walled carbon nanotubes (MWCNT) were treated with nickel by electroless plating method for improving electromagnetic interference (EMI) shielding performance of MWCNT. The physical properties of electroless plated MWCNT were analyzed by using ultra-high resolution scanning electron microscope (UHR-SEM), thermogravimetry (TGA), sheet resistance analyzer and EMI shielding analyzer. EMI shielding efficiencies of nickel electroless plated MWCNT were measured to be 16 dB from 800 MHz band, which was 1.6 times increased compared to that of the activated MWCNT. Also, the average sheet resistance of nickel electroless plated MWCNT was measured to be $70{\Omega}/sq$, which was 56% decreased compared to that of the activated MWCNT. This result could be attributed to the plating morphology on the surface of MWCNT. This result could be attributed to uniformity of plating morphology on the surface, which has more effect on EMI shielding efficiency than the amount of nickel plating.

본 연구에서는 탄소나노튜브의 전자파 차폐 성능을 향상시키고자 무전해 도금법을 이용하여 다중벽 탄소나노튜브에 니켈을 도입하였다. 니켈 도금된 다중벽 탄소나노튜브의 물리적 특성은 고분해능주사전자현미경, 열중량분석기, 표면저항측정기, 전자파 차폐능 분석기를 이용하여 분석하였다. 니켈 도금된 다중벽 탄소나노튜브의 전자파 차폐 효율은 800 MHz 영역에서 16 dB로 측정되었으며 활성화 처리된 다중벽 탄소나노튜브에 비하여 최대 1.6배 증가하였다. 또한, 평균 표면 저항 역시 $70{\Omega}/sq$로 활성화 처리된 다중벽 탄소나노튜브에 비하여 최대 56% 감소한 수치를 나타내었다. 이러한 결과는 니켈 도금 함량에 비하여 표면의 도금 형태가 전자파 차폐 효율에 더 많은 영향을 끼치기 때문인 것으로 판단된다.

Keywords

References

  1. D. Ding, F. Luo, and W. Zhow, Effects of thermal oxidation on electromagnetic interference shielding properties of SiCf/SiC composites, Ceram. Int., 39, 4281-4286 (2013). https://doi.org/10.1016/j.ceramint.2012.11.007
  2. W. K. Choi, B. J. Kim, and S. J. Park, Fiber surface and electrical conductivity of electroless Ni-plated PET ultra-fine fibers, Carbon Lett., 14, 243-246 (2013). https://doi.org/10.5714/CL.2013.14.4.243
  3. G. Y. Han, D. H. Song, and J. S. Bae, Electromagnetic interference shielding effectiveness of fiber reinforced composites hybrid conductive filler, J. Ocean Eng. Technol., 23, 35-39 (2009).
  4. J. I. Lee and H. T. Jung, Technical status of carbon nanotubes composites, Korean Chem. Eng. Res., 46, 7-14 (2008).
  5. A. Hirsch, Functionalization of single-walled carbon nanotubes, Angew. Chem. Int. Ed., 41, 1853-1859 (2002). https://doi.org/10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N
  6. H. D. Wagner, O. Lourie, Y. Feldman, and R. Tenne, Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix, Appl. Phys. Lett., 72, 188-190 (1998). https://doi.org/10.1063/1.120680
  7. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 381, 678-680 (1996). https://doi.org/10.1038/381678a0
  8. Y. I. Song, J. W. Lee, T. Y. Kim, H. J. Jung, Y. C. Jung, S. J. Suh, and C. M. Yang, Performance-determining factors in flexible transparent conducting single-wall carbon nanotube film, Carbon Lett., 14, 255-258 (2013). https://doi.org/10.5714/CL.2013.14.4.255
  9. S. J. Park, Y. S. Jang, and K. Y. Rhee, Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces, J. Colloid Interface Sci., 245, 383-390 (2002). https://doi.org/10.1006/jcis.2001.8040
  10. R. P. Tracy and G. J. Shawhan, Practical guide to using Ni-P electroless nickel coatings, J. Mater. Perform., 29, 65-70 (1990).
  11. K. Y. Park, S. B. Lee, J. B. Kim, J. W. Yi, S. K. Lee, and J. H. Han, Fabrication and microstructure of metal-coated carbon nanofibers using electroless plating, J. Korean Soc. Compos. Mater., 20, 43-48 (2007).
  12. G. O. Mallory and J. B. Hajudu, Electroless Plating : fundamentals and applications, 1-539, Cambridge University Press, Florida, USA (1990).
  13. P. F. Wilson, M. T. Ma, and J. W. Adams, Techniques for measuring the electromagnetic shielding effectiveness of materials : Part I : -Far-Field source simulation, IEEE Trans. Electromagn. Compat., 30, 239-250 (1988). https://doi.org/10.1109/15.3302
  14. L. H. Thompson and L. K. Doraiswamy, Sonochemistry : Science and Engineering, Ind. Eng. Chem. Res., 38, 1215-1249 (1999). https://doi.org/10.1021/ie9804172
  15. J. H. Cho, S. G. Ko, Y. K. Ahn, K. C. Song, and E. J. Choi, Synthesis of Monodisperse Magnetite Nanocrystallites Using Sonochemical Method, J. Korean Magn. Soc., 16, 163-167 (2006). https://doi.org/10.4283/JKMS.2006.16.3.163
  16. F. Tian, H. P. Li, N. Q. Zhao, and C. N. He, Catalyst effects of fabrication of carbon nanotubes synthesized by chemical vapor deposition, Mater. Chem. Phys., 115, 493-495 (2009). https://doi.org/10.1016/j.matchemphys.2009.01.007
  17. T. S. Oh, Polymeric composite material for shielding of electromagnetic interference, Polym. Sci. Technol., 2, 179-190 (1991).
  18. S. A. Schelkunoff, The electromagnetic theory of coaxial transmission lines and cylindrical shields, Bell Syst. Tech. J., 13, 532-579 (1934). https://doi.org/10.1002/j.1538-7305.1934.tb00679.x
  19. H. R. Kim, K. Fujimori, B. S. Kim, and I. S. Kim, Lightweight nanofibrous EMI shielding nanowebs prepared by electrospinning and metallization, Compos. Sci. Technol., 72, 1233-1239 (2012). https://doi.org/10.1016/j.compscitech.2012.04.009
  20. A. Gupta and V. Choudhary, Electromagnetic interference shielding behavior of poly(trimethylene terephthalate)/multi-walled carbon nanotube composites, Compos. Sci. Technol., 71, 1563-1568 (2011). https://doi.org/10.1016/j.compscitech.2011.06.014
  21. J, M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huyuen, and C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials, Mat. Sci. Eng. R., 74, 211-232 (2013). https://doi.org/10.1016/j.mser.2013.06.001
  22. X. Liu, X. Yin, L. Kong, Q. Li, Y. Liu, W. Duan, L. Zhang, and L. Cheng, Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites, Carbon, 68, 501-510 (2014). https://doi.org/10.1016/j.carbon.2013.11.027

Cited by

  1. Electromagnetic Interference Shielding Efficiency Characteristics of Ammonia-treated Graphene Oxide vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1105
  2. Electromagnetic Interference Shielding Effectiveness of Electroless Nickel Plating and Anodization on Modified Carbon Nanotubes/Epoxy Composites vol.52, pp.3, 2015, https://doi.org/10.12772/TSE.2015.52.151
  3. Simultaneous Realization of Electromagnetic Shielding and Antibacterial Effect of Al Doped ZnO Thin Films onto Glass Substrate vol.29, pp.5, 2016, https://doi.org/10.4313/JKEM.2016.29.5.279
  4. 다중벽 탄소나노튜브와 니켈 분말을 포함하는 전도성 복합체 제조 vol.54, pp.3, 2014, https://doi.org/10.9713/kcer.2016.54.3.410
  5. 무전해 구리도금 된 흑연 섬유의 발열 특성 vol.55, pp.2, 2017, https://doi.org/10.9713/kcer.2017.55.2.264
  6. 탄소나노튜브의 무전해 니켈도금 및 전자파 차폐 특성에 미치는 함산소불소화의 영향 vol.30, pp.2, 2014, https://doi.org/10.14478/ace.2018.1125