DOI QR코드

DOI QR Code

Evaluation of Characteristics of Shear Strength and Poisso's Ratio through Triaxial and Bender Element Tests

벤더엘리먼트와 삼축시험을 통한 모래의 전단강도 및 포아송비 특성 규명

  • Yoo, Jin-Kwon (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Park, Du-Hee (Dept. of Civil and Environmental Engrg., Hanyang Univ.)
  • 유진권 (한양대학교 건설환경공학과) ;
  • 박두희 (한양대학교 건설환경공학과)
  • Received : 2014.04.14
  • Accepted : 2014.04.21
  • Published : 2014.05.31

Abstract

In this paper, isotropically consolidated drained triaxial compression test device installed with bender elements is used to measure stress, stain, and shear wave velocity, from which the characteristics of shear strength and Poisson'ratio are investigated. The results show that there is a unique relationship between maximum shear modulus determined from shear wave velocity and effective vertical stress at failure, which is defined as the sum of vertical and radial stresses at failure. The correlation is very useful since it is possible to predict the shear strength and internal friction angle from shear wave velocity. In addition, Poisson's ratio is determined from measured axial and volumetric strains. It is demonstrated that the range of measured Poisson's ratio is between 0.15 and 0.6, and increases with the axial strain. The ratios at axial strains smaller than 0.2% corresponds to the range recommended in design codes, which are approximately from 0.3~0.35. However, at axial strains exceeding 1%, the measured ratios are between 0.5 and 0.6. It is therefore shown that use of ratios commonly used in practice will result in pronounced underestimation at large strains.

본 연구에서는 벤더엘리먼트가 장착된 삼축시험장비를 이용하여 모래에 대한 일련의 압밀배수시험을 수행하여 응력, 변형률, 그리고 전단파속도를 측정하였으며 이로부터 전단강도와 포아송비의 특성을 분석하였다. 분석 결과, 전단파속도로부터 계산된 최대전단탄성계수와 파괴시의 축응력과 반경방향 응력의 합으로 정의되는 유효수직응력과는 고유한 상관관계가 존재하는 것으로 나타났다. 도출된 경험식은 전단파속도와 전단강도 그리고 마찰각간의 상관관계를 나타내므로 매우 유용하다고 판단된다. 나아가 본 연구에서는 측정된 축변형률과 체적변형률로부터 모래의 포아송비를 측정하였다. 포아송비는 변형률과 체적변화에 큰 영향을 받으며 0.15~0.6까지 변형률에 따라서 크게 증가하는 것으로 나타났다. 특히 0.2% 미만의 축변형률에서는 대략 0.25~0.4으로 기존 문헌에서 제시된 0.3~0.35를 크게 벗어나지 않지만 1% 이상의 변형률에서는 0.5~0.6으로 문헌에서 제시된 값은 포아송비를 크게 과소예측하는 것으로 나타났다.

Keywords

References

  1. Cho, G.C. and Lee, I.M. (2002), "Soil Properties in relation to Elastic Wave", Journal of Korean Geotechnical Engineering, Vol. 18, No.6, pp.83-101.
  2. Cresswell, A., Barton, M.E., and Brown, R. (1999), "Determining the maximum density of sands by pluviation", ASTM geotechnical testing journal, Vol.22, No.4, pp.324-328. https://doi.org/10.1520/GTJ11245J
  3. Duncan, J.M. and Chang, C.-Y. (1970), "Nonlinear analysis of stress and strain in soils", Journal of the Soil Mechanics and Foundations Division, Vol.96, No. SM5, pp.1629-1653.
  4. Dyvik, R. and Madshus, C. (1985), "Lab Measurements of Gmax Using Bender Elements", Advances in the art of testing soils under cyclic conditions: ASCE, pp.186-196.
  5. Fernandez, A.L. (2000), "Tomographic imaging the state of stress", PhD thesis Civil Engineering, Georgia Institute of Technology, Atlanta. pp.298.
  6. Frost, J. and Park, J.-Y. (2003), "A critical assessment of the moist tamping technique", ASTM geotechnical testing journal, Vol.26, No.1, pp.57-70.
  7. Head, K.H. and Epps, R. (1986), Manual of soil laboratory testing, Pentech Press London, pp.
  8. Juneja, A. and Raghunandan, M. (2010), "Effect of Sample Preparation on Strength of Sands", Indian Geotechnical Conference, Mumbai, India, pp.327-330.
  9. Kumar, J. and Madhusudhan, B. (2010), "Effect of relative density and confining pressure on Poisson ratio from bender and extender elements tests", Geotechnique, Vol.60, No.7, pp.561-567. https://doi.org/10.1680/geot.9.T.003
  10. Ladd, C. and Foott, R. (1974), "New design procedure for stability of soft clays", Journal of the Geotechnical Engineering Division, Vol.100, No.7, pp.763-786.
  11. Ladd, R. (1978), "Preparing test specimens using undercompaction", ASTM geotechnical testing journal, Vol.1, No.1. pp.16-23.
  12. Lee, J.-S. and Santamarina, J.C. (2005), "Bender elements: performance and signal interpretation", Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.9, pp.1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)
  13. Raghunandan, M., Juneja, A., and Hsiung, B. (2012), "Preparation of reconstituted sand samples in the laboratory", International Journal of Geotechnical Engineering, Vol.6, No.1, pp.125-131. https://doi.org/10.3328/IJGE.2012.06.01.125-131
  14. Sharma, R.M., Baxter, C.D., Moran, K., Vaziri, H., and Narayanasamy, R. (2011), "Strength of weakly cemented sands from drained multistage triaxial tests", Journal of Geotechnical and Geoenvironmental Engineering, Vol.137, No.12, pp.1202-1210. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000537
  15. Richart, F.E., Hall, J.R., and Woods, R.D. (1970), "Vibrations of soils and foundations", Prentice-Hall, Englewood Cliffs, New Jersey, pp.414.
  16. Roesler, S.K. (1979), "Anisotropic shear modulus due to stress anisotropy", Journal of the Geotechnical Engineering Division, Vol. 105, No.7, pp.871-880.
  17. Salem, H. (2000), "Poisson's ratio and the porosity of surface soils and shallow sediments, determined from seismic compressional and shear wave velocities", Geotechnique, Vol.50, No.4, pp.461-463. https://doi.org/10.1680/geot.2000.50.4.461
  18. Viggiani, G. and Atkinson, J. (1995), "Interpretation of bender element tests", International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts: Elsevier, 32, pp.373A-373A.
  19. Yoshimi, Y., Tokimatsu, J., and Ohara, A. (1994), "In situ liquefaction resistance of clean sands over a wide density range", Geotechnique, Vol.44, No.3, pp.479-494. https://doi.org/10.1680/geot.1994.44.3.479