DOI QR코드

DOI QR Code

Evaluation of the Shear Wave Velocity Profile of Rockfill Zone of CFRD Using HWAW Method

국내 콘크리트 표면차수벽형 석괴댐(CFRD) 사력존의 전단파 속도 분포 결정(I): HWAW 방법을 사용한 CFRD 사력존 전단파 속도 주상도 결정

  • Received : 2013.10.24
  • Accepted : 2014.03.31
  • Published : 2014.05.31

Abstract

Rockfill zone is a main part of the CFRD for safety and it is important to evaluate the status such as shear wave velocity profile of the rockfill zone. A surface wave method can be used to evaluate the rockfill zone but general surface wave method can have a difficulty to be applied for valuation of rockfill zone because of a stiff slope of dam and background noise in the field. In this research, HWAW method is applied to evaluate the shear wave velocity of rockfill zone. The field test of the proposed method is simple and fast and the HWAW method can determine the reliable shear wave velocity profile under severe noise field condition. To show feasibility of the proposed method, numerical simulation and field tests were performed. Through the numerical and field tests, the applicability of the proposed method was shown.

CFRD(Concrete Faced Rockfill Dam) 사력존은 CFRD의 구조적 안전성을 담당하는 부분으로 이러한 사력존의 평가는 댐체 구조안정성 평가를 위해 매우 중요하다. 댐 사력존 평가는 표면파 시험을 통해 효과적으로 수행될 수 있으나 상당한 경사를 가지는 사면위에서 실험이 수행되어야 하며, 실험에서 얻어지는 데이터에는 다양한 반사면에 의해 발생하는 반사파 등으로 구성된 잡음등이 존재하기 때문에 일반적인 표면파 기법 적용이 어렵다. 본 연구에서는 다양한 표면파 기법중 하나인 HWAW(Harmonic Wavelet Analysis of Waves) 방법을 CFRD 사력존 전단파 속도 주상도 평가에 적용하였다. HWAW 방법은 상대적으로 단순한 실험구성을 사용하여 신속하고 간편한 현장실험이 가능하며, 높은 잡음조건하에서도 신뢰할 수 있는 전단파 속도 주상도 결정이 가능하다. 본 연구에서는 제안된 방법의 적용성을 알아보기 위해 수치모의 실험을 수행하였으며, 국내 CFRD 사력존 평가 및 현장 적용성을 평가하기 위하여 3곳의 CFRD를 선정하여 제안된 방법을 적용하였다. 이를 통해 제안된 방법의 타당성을 확인할 수 있었으며, 국내 CFRD 사력존의 전단파 속도 주상도를 결정할 수 있었다.

Keywords

References

  1. Boudraa, A.O. and Cexus, J.C. (2007), EMD-based signal filtering, IEEE Transactions on Instrumentation and Measurement, Vol.56, No.6, pp.2196-2202. https://doi.org/10.1109/TIM.2007.907967
  2. Gabriels, P., Snieder, R., and Nolet, G. (1987), In situ measurements of shear-wave velocity in sediments with higher-mode rayleigh waves, Geophysical Prospecting, Vol.35, pp.187-196. https://doi.org/10.1111/j.1365-2478.1987.tb00812.x
  3. Ganji, V., Gucunski, N., and Nazarian, S. (1998), Automated inversion procedure for spectral analysis of surface waves, J. of Geotechnical and Geoenvironmental Engineering, Vol.124, No.8, pp.757-770. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(757)
  4. Joh, S.H. (1996), Advanced in interpretation and analysis techniques for spectral-analysis-of-surface-waves (SASW) measurements, Ph.D. Dissertation, The University of Texas of Austin
  5. Kausel, E. and Roesset, J.M. (1981), Stiffness matrices for layered soils, Bull Seismological Soc. of Am, Vol.71, pp.1743-1761.
  6. Kim, J.T., Kim, D.S., Park, H.J., and Kwon, H.K. (2009), Estimation of dynamic material properties for fill dam: I. In-situ shear wave velocity profiles, J. of the Korean Geotechnical Society, Vol.25, No.12, pp.69-85.
  7. Kim, J.T. (2010), Application of the surface wave method to various geotechnical structures of finite boundaries, Ph.D. Dissertation, KAIST.
  8. Lin, Y.C. (2007), Characterizing Vs profiles by the SASW method and comparison with other seismic methods, Ph.D. Dissertation, The University of Texas at Austin.
  9. Marosi, K. and Hiltunen, D. (2004), Characterization of spectral analysis of surface waves shear wave velocity measurement uncertainty, J. of Geotechnical and Geoenvironmental Engineering, Vol.130, No.10, pp.1034-1041. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1034)
  10. Misiti, M., Misiti, Y., Oppenhein, G., and Poggi, J.M., Wavelet ToolboxTM 5: User's Guide, The MathWorks, Inc.
  11. Nazarian, S. and Stokoe, K.H.II. (1984), Use of surface waves in pavement evaluation, Transportation Research Record, Vol.1070, pp.132-144.
  12. Newland, D.E. (1993), An introduction to random vibration, spectral & wavelet analysis, 3rd ed. Mineola, New York, Dover Publications.
  13. Park, C.B., Miller, R.D., and Xia, J.H. (1999), Multichannel analysis of surface waves, Geophysics, Vol.64, pp.800-808. https://doi.org/10.1190/1.1444590
  14. Park, H.C. and Kim, D.S. (2004a), Development of seismic site characterization method using HWAW(Harmonic Wavelet Analysis of Wave) Method (I): Determination of dispersion curve, J. of the Korean Society of Civil Engineers, Vol.24, No.2C, pp.106-115.
  15. Park, H.C. and Kim, D.S. (2004b), Development of seismic site characterization method using HWAW (Harmonic Wavelet Analysis of Wave) method (II): Experimental setup and inversion process, J. of the Korean Society of Civil Engineers, Vol.24, No.2C, pp. 117-124.
  16. Park, H.C., Kim, D.S., and Lee, B.S. (2004), Field application of new seismic site characterization using HWAW (Harmonic Wavelet Analysis of Wave) method, J. of the Korean Geotechnical Society, Vol.20, No.6, pp.51-59.
  17. Park, H.C. and Hwang, H.J. (2012), Development of automated inversion method for HWAW method using genetic algorithms, J. of the Korean Geotechnical Society, Vol.28, No.8, pp.55-64.
  18. Proakis, J.G. and Manolakis D.G. (1996), Digital signal processing: Principles, algorithms, and applications, 3rd ed. Englewood Cliffs, NJ: Prentice Hall.
  19. Stokoe, K.H.II., Wright, S.G., Bay, J.A., and Roesset, J.M. (1994), Characterization of geotechnical sites by SASW method, in: ISSMFE Technical Committee #10 for XII IICSMFE, Geophysical Characterization of Sites, A.A.Balkema Publishers/Rotterdam&Brookfield, Netherlands, pp.15-25.
  20. Uddin, N. (1992), Seismic analysis of earth-core and concrete-face rockfill dams, Ph.D. Dissertation, University of New York at Buffalo.

Cited by

  1. 국내 콘크리트 표면차수벽형 석괴댐(CFRD) 사력존의 전단파 속도 분포 결정(II): 물성치의 공간 변동성에 의한 불확실성이 고려된 CFRD 사력존의 1차원 전단파 속도 주상도의 결정 vol.30, pp.5, 2014, https://doi.org/10.7843/kgs.2014.30.5.17
  2. 신뢰성 기반 해석을 위한 국내 필댐 구성 재료의 전단파 속도 변동계수 결정 vol.36, pp.4, 2014, https://doi.org/10.7843/kgs.2020.36.4.31