DOI QR코드

DOI QR Code

암모니아 용출용액을 이용한 저 품위 엽납석으로부터 Fe 제거 효율과 용해 동역학

The Efficiency of Fe Removal for Pyrophyllite by Ammonia Leaching Solution, and Their Dissolution Kinetics

  • 김봉주 (조선대학교 에너지.자원공학과) ;
  • 조강희 (조선대학교 에너지.자원공학과) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지.자원공학과)
  • Kim, Bong-Ju (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Cho, Kang-Hee (Dept. of Energy and Resource Engineering, Chosun University) ;
  • Choi, Nag-Choul (Dept. of Rural Systems Engineering/Research Institute for Agriculture and Life Science, Seoul National University) ;
  • Park, Cheon-Young (Dept. of Energy and Resource Engineering, Chosun University)
  • 투고 : 2013.12.18
  • 심사 : 2014.03.21
  • 발행 : 2014.03.31

초록

저 품위 엽납석 광석에 포함된 불순물 Fe를 제거하기 위하여 입도크기, 황산농도, 황산암모늄농도, 과산화수소농도 그리고 온도변화에 따른 제거 효율에 대하여 연구하였다. 저 품위 엽납석 광석에서 자형의 입방체 황철석이 포함된 것을 반사현미경으로 관찰할 수 있었으며, X-선 회절분석결과 주 구성광물은 석영과 딕카이트였다. 실험 결과 Fe 용출율이 최대로 나타나는 입도 -325 mesh에서, 황산농도는 2.0 M에서, 황산암모늄 농도는 10.0 g/l, 과산화수소 농도 3.0 M 그리고 최적의 용출 온도는 $70^{\circ}C$에서였다. 용해 동역학 분석에서, Fe 용해는 황철석 표면에서 일어나며 화학적 반응에 통제되는 것으로 그리고 0.066/R, $[H_2SO_4]^{1.156}$, $[(NH_4)_2SO_4]^{0.745}$, $[H_2O_2]^{0.428}$에 비례하는 것으로 나타났다.

In order to remove Fe impurity from low-grade pyrophyllite ore, the effect of certain variables such as particle size, concentration of sulfuric acid, amount of ammonium sulfate, added hydrogen peroxide, and temperature were studied. The euhedral cubic pyrites were observed in the low-grade pyrophyllite ore by reflected light microscopy, and quartz and dickite were identified in the sample by XRD analysis. The results of the Fe removal experiments showed that the best Fe removal parameters were when the particle size was at -325 mesh, the addition of $H_2SO_4$, $(NH_4)_2SO_4$ and $H_2O_2$ was at a 2.0 M, 10.0 g/l, and 3.0 M concentration, respectively, and at a $70^{\circ}C$ leaching temperature. In the dissolution kinetics analysis, the dissolution of Fe from the pyrite surface was a controlled chemical reaction, and the Fe dissolution reaction was proportioned to 0.066/R, $[H_2SO_4]^{1.156}$, $[(NH_4)_2SO_4]^{0.745}$, $[H_2O_2]^{0.428}$.

키워드

참고문헌

  1. Adebayo, A.O., Ipinmoroti, K.O., and Ajayi, O.O. (2003) Dissolution kinetics of chalcopyrite with hydrogen peroxide in sulfuric acid medium. Chem. Biochem. Eng. Q., 17, 213-218.
  2. Ambikadevi, V.R. and Lalithambika, M. (2000) Effect of organic acids on ferric iron removal from iron-stained kaolinite. Applied Clay Science, 16,133-145. https://doi.org/10.1016/S0169-1317(99)00038-1
  3. Antonijevic, M.M., Dimitrijevic, M., and Jankovic, Z. (1997) Leaching of pyrite with hydrogen peroxide sulphuric acid. Hydrometallurgy, 46, 71-83. https://doi.org/10.1016/S0304-386X(96)00096-5
  4. Antonijevic, M.M., Jankovic, Z.D., and Dimitrijevic, M. D. (2004) Kinetics of chalcopyrite dissolution by hydrogen peroxide in sulphuric acid. Hydrometallurgy, 71, 329-334. https://doi.org/10.1016/S0304-386X(03)00082-3
  5. Aydogan, S. (2006) Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium. Chemical Engineering Journal, 123, 65-70. https://doi.org/10.1016/j.cej.2006.07.001
  6. Aydogan, S., Aras, A., Ucar, G., and Erdemoglu, M. (2007) Dissolution kinetics of galena in acetic acid solutions with hydrogen peroxide. Hydrometallurgy, 89, 189-195. https://doi.org/10.1016/j.hydromet.2007.07.004
  7. Aydogan, S., Erdemoglu, M., Aras, A., Ucar, G., and Ozkan, A. (2006) Dissolution kinetics of celesite( SrSO4) in HCl solution with $BaCl_2$. Hydrometallurgy, 84, 239-246. https://doi.org/10.1016/j.hydromet.2006.06.001
  8. Aydogan, S., Erdemoglu, M., Ucar, G., and Aras, A. (2007) Kinetics of galena dissolution in nitric acid solutions with hydrogen peroxide. Hydrometallurgy, 88, 52-57. https://doi.org/10.1016/j.hydromet.2007.03.005
  9. Chaudhury, G.R., Sukla, L.B., and Das, R.P. (1985) Kinetics of bio-chemical leaching of sphalerite concentrate. Metallurgical Transaction B, 16B, 667-670.
  10. Chen, A.A. and Dreisinger, D.B. (1994) The ferric fluosilicate leaching of lead concentrates: part 1. kinetic studies. Metallurgical and Materials Transactions B, 25B, 472-480.
  11. Demirkiran, N. and Kunkul, A. (2007) Dissolution kinetics of ulexite in perchloric acid solutions. International Journal of Mineral Processing, 83, 76-80. https://doi.org/10.1016/j.minpro.2007.04.007
  12. Dimitrijevic, M., Antonijevic, M.M., and Jankovic, Z. (1996) Kinetics of pyrite dissolution by hydrogen peroxide in perchloric acid. Hydrometallurgy, 42, 377-386. https://doi.org/10.1016/0304-386X(95)00094-W
  13. Jiang, T., Yang, Y., Huang, Z., and Qiu, G. (2003) Simultaneous leaching of manganese and silver from manganese-silver ores at room temperature. Hydrometallurgy, 69, 177-186. https://doi.org/10.1016/S0304-386X(03)00033-1
  14. Jiang, T., Yang, Y., Huang, Z., Zhang, B., and Qiu, G. (2004) Leaching kinetics of pyrolusite from manganese- silver ores in the presence of hydrogen peroxide. Hydrometallurgy, 72, 129-138. https://doi.org/10.1016/S0304-386X(03)00136-1
  15. Kadioglu, Y., Karaca, S., and Bayrakceken, S. (1995) Kinetics of pyrite oxidation in aqueous suspension by nitric acid. Fuel Processing Technology, 41, 273-287. https://doi.org/10.1016/0378-3820(94)00101-X
  16. Karaca, H. and Ceylan, K. (1997) Chemical cleaning of Turkish lignites by leaching with aqueous hydrogen peroxide. Fuel Processing Technology, 50, 19-33. https://doi.org/10.1016/S0378-3820(96)01042-9
  17. Levenspiel, O. (1999) Chemical reaction engineering. John Wiley & Sons, 668p.
  18. Liddell, K.C. (2005) Shrinking core models in hydrometallurgy: what student are not being told about the pseudo-steady approximation. Hydrometallurgy, 79, 62-68. https://doi.org/10.1016/j.hydromet.2003.07.011
  19. Mohapatra, M., Anand, S., Das, R.P., Upadhyay, C., and Verma, H.C. (2002) Aqueous reduction of crystalline goethite under ammonical conditions. Hydrometallurgy, 65, 227-235. https://doi.org/10.1016/S0304-386X(02)00096-8
  20. Murthy, D.S.R. and Prasad, P.M. (1996) Leaching of gold and silver from Miller process dross through non-cyanide leachants. Hydrometallurgy, 42, 27-33. https://doi.org/10.1016/0304-386X(95)00049-M
  21. Parida, K.M., Dash, S.S., and Das, S.M. (2005) Effect of heat treatment on the physico-chemical properties and catalytic activity of manganese nodules leached residue towards decomposition of hydrogen peroxide. Journal of Colloid and Interface Science, 290, 431-436. https://doi.org/10.1016/j.jcis.2005.04.056
  22. Safari, V., Arzpeyma, G., Rereshtehi, F., and Mostoufi, N. (2009) A shrinking particle-shrinking core model for leaching of a zinc ore containing silica. International Journal of Mineral Processing, 93, 79-83. https://doi.org/10.1016/j.minpro.2009.06.003
  23. Veglio, F., Passariello, B., Barbaro, M., Plescia, P., and Marabini, A.M. (1998) Drum leaching tests in iron removal from quartz using oxalic and sulphuric acids. International Journal of Mineral Processing, 54, 183-200. https://doi.org/10.1016/S0301-7516(98)00014-3
  24. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. https://doi.org/10.1016/S0304-386X(00)00197-3
  25. Velardo, A., Giona, M., Adrover, A., Pagnanelli, F., and Toro, L. (2002) Two-layer shrinking-core model: parameter estimation for the reaction order in leaching processes. Chemical Engineering Journal, 90, 231-240. https://doi.org/10.1016/S1385-8947(02)00038-4
  26. Zhang, S., Li, J., Wang, Y., and Hu, G. (2004) Dissolution kinetics of galena in acid NaCl solutions. Applied Geochemistry, 19, 835-841. https://doi.org/10.1016/j.apgeochem.2003.10.005

피인용 문헌

  1. The Characterization of Pyrophyllite Based Ceramic Reactive Media for Permeable Reactive Barriers vol.31, pp.4, 2018, https://doi.org/10.9727/jmsk.2018.31.4.227