References
- (a) Wang, K.; Guengerich, F. P. Chem. Res. Toxicol. 2012, 25, 1740. https://doi.org/10.1021/tx3001994
- (b) Aiello, S.;Wells, G.; Stone, E. L.; Kadri, H.; Bazzi, R.; Bell, D. R.; Stevens, M. F.; Matthews, C. S.; Bradshaw, T. D.; Westwell, A. D. J. Med. Chem. 2008, 51, 5135. https://doi.org/10.1021/jm800418z
- (c) Hutchinson, I.; Chua, M. S.; Browne, H. L.; Trapani, V.; Bradshaw, T. D.; Westwell, A. D.; Stevens, M. F. J. Med. Chem. 2001, 44, 1446. https://doi.org/10.1021/jm001104n
- (a) Yao, S.; Schafer-Hales, K. J.; Belfield, K. D. Org. Lett. 2007, 9, 5645. https://doi.org/10.1021/ol7026366
- (b) Rodionov, V. O.; Presolski, S. I.; Gardinier, S.; Lim, Y. H.; Fin, M. G. J. Am. Chem. Soc. 2007, 129, 12696. https://doi.org/10.1021/ja072678l
- (c) Roh, S.-G.; Kim, Y.-H.; Seo, K. D.; Lee, D. H.; Kim, H. K.; Park, Y.-I.; Park, J.-W.; Lee, J.-H. Adv. Funct. Mater. 2009, 19, 1663. https://doi.org/10.1002/adfm.200801122
- (a) Huang, J.; Chan, J.; Chen, Y.; Borths, C. J.; Baucom, K. D.; Larsen, R. D.; Faul, M. M. J. Am. Chem. Soc. 2010, 132, 3674. https://doi.org/10.1021/ja100354j
- (b) Zhang, W.; Zeng, Q.; Zhang, X.; Tian, Y.; Yue, Y.; Guo, Y.; Wang, Z. J. Org. Chem. 2011, 76, 4741. https://doi.org/10.1021/jo200452x
- (c) Malakar, C. C.; Schmidt, D.; Conard, J.; Beifuss, U. Org. Lett. 2011, 13, 1387.
- (d) Salvanna, N.; Reddy, G. C.; Das, B. Tetrahedron 2013, 69, 2220. https://doi.org/10.1016/j.tet.2012.12.080
- (a) Bort, G.; Veitia, M. S.-I.; Ferroud, C. Tetrahedron 2013, 69, 7345. https://doi.org/10.1016/j.tet.2013.06.085
- (b) heo, Y.; Song, Y. S.; Kim, B. T.; Heo, J.-N. Tetrahedron Lett. 2006, 47, 3091. https://doi.org/10.1016/j.tetlet.2006.02.152
- (c) Majo, V. J.; Prabhakaran, J.; Mann, J. J.; Kumar, J. S. D. Tetrahedron Lett. 2003, 44, 8535. https://doi.org/10.1016/j.tetlet.2003.09.138
- (a) Fan, X.; He, Y.; Wang, Y.; Xue, Z.; Zhang, X.; Wang, J. Tetrahedron Lett. 2011, 52, 899. https://doi.org/10.1016/j.tetlet.2010.12.057
- (b) Meghdadi, S.; Amirnasr, M.; Ford, P. C. Tetrahedron Lett. 2012, 53, 6950. https://doi.org/10.1016/j.tetlet.2012.10.035
- (c) Yu, H.; Zhang, M.; Li, Y. J. Org. Chem. 2013, 78, 8898. https://doi.org/10.1021/jo401353w
- (d) Nguyen, T. B.; Ermolenko, L.; Al-Mourabit, A. Org. Lett. 2013, 15, 4218. https://doi.org/10.1021/ol401944a
- Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. Chem. 1991, 56, 1445. https://doi.org/10.1021/jo00004a021
- (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. https://doi.org/10.1021/cr020033s
- (b) Marsilje, T. H.; Hedrick, M. P.; Desharnais, J.; Tavassoli, A.; Zhang, Y.; Wilson, I. A.; Benkovicd, S. J.; Boger, D. L. Bioorg. Med. Chem. 2003, 11, 4487. https://doi.org/10.1016/S0968-0896(03)00456-5
- (a) Liu, S.; Chen, R.; Chen, H.; Deng, G.-J. Tetrahedron Lett. 2013, 54, 3838. https://doi.org/10.1016/j.tetlet.2013.05.050
- (b) Gao, Q.; Wu, X.; Jia, F.; Liu, M.; Zhu, Y.; Cai, Q.; Wu, A. J. Org. Chem. 2013, 78, 2792. https://doi.org/10.1021/jo302754c
Cited by
- -Halonitrobenzenes, Acetophenones, and Elemental Sulfur vol.17, pp.10, 2015, https://doi.org/10.1021/acs.orglett.5b01182
- A Versatile Organozinc Approach to the Synthesis of Potential Organic Functional Building Blocks: 5-Substituted 3-Bromo-2-Methylthiophene Derivatives vol.36, pp.4, 2015, https://doi.org/10.1002/bkcs.10217
- ChemInform Abstract: Direct Preparation of 2-Benzothiazolylzinc Bromide and Its Applications: A Facile Synthetic Route to the Preparation of 2-Substituted Benzothiazole Derivatives. vol.45, pp.52, 2014, https://doi.org/10.1002/chin.201452131