감성분석을 위한 병렬적 HDFS와 맵리듀스 함수

A Parallel HDFS and MapReduce Functions for Emotion Analysis

  • 투고 : 2014.10.30
  • 심사 : 2014.12.30
  • 발행 : 2014.12.31

초록

최근 대량의 SNS(Social Network Service) 데이터로부터 유용한 정보를 추출하고 사용자의 진의 정보를 평가하기 위한 오피니언 마이닝(opinion mning)이 소개되고 있다. 오피니언 마이닝은 대량의 SNS 데이터로부터 빠른 기간 내에 데이터를 수집하고 분석하여 목적에 적합한 정보를 추출하는 효율적인 기법이 필요하다. SNS에서 발생되는 다양한 비정형 데이터로부터 감성정보를 추출하기 위해, 본 논문에서는 하둡(Hadoop) 시스템 기반의 병렬적 HDFS(Hadoop Distributed File System)와 맵리듀스(MapReduce) 기반 감성분석 함수를 제안한다. 실험결과로 제안한 시스템과 함수는 데이터 수집과 적재시간에 대해 O(n)보다 빠르게 처리하며, 메모리와 CPU 자원에 대해 안정적인 부하분산이 이루어지는 것을 확인하였다.

Recently, opinion mining is introduced to extract useful information from SNS data and to evaluate the true intention of users. Opinion mining are required several efficient techniques to collect and analyze a large amount of SNS data and extract meaningful data from them. Therefore in this paper, we propose a parallel HDFS(Hadoop Distributed File System) and emotion functions based on Mapreduce to extract some emotional information of users from various unstructured big data on social networks. The experiment results have verified that the proposed system and functions perform faster than O(n) for data gathering time and loading time, and maintain stable load balancing for memory and CPU resources.

키워드