DOI QR코드

DOI QR Code

CURRENT STATUS OF 3-DIMENSIONAL SPECKLE TRACKING ECHOCARDIOGRAPHY: A REVIEW FROM OUR EXPERIENCES

  • Seo, Yoshihiro (Cardiovascular Division, Faculty of Clinical Medicine, University of Tsukuba) ;
  • Ishizu, Tomko (Cardiovascular Division, Faculty of Clinical Medicine, University of Tsukuba) ;
  • Aonuma, Kazutaka (Cardiovascular Division, Faculty of Clinical Medicine, University of Tsukuba)
  • Received : 2014.05.30
  • Accepted : 2014.06.07
  • Published : 2014.06.27

Abstract

Cardiac function analysis is the main focus of echocardiography. Left ventricular ejection fraction (LVEF) has been the clinical standard, however, LVEF is not enough to investigate myocardial function. For the last decade, speckle tracking echocardiography (STE) has been the novel clinical tool for regional and global myocardial function analysis. However, 2-dimensional imaging methods have limitations in assessing 3-dimensional (3D) cardiac motion. In contrast, 3D echocardiography also has been widely used, in particular, to measure LV volume measurements and assess valvular diseases. Joining the technology bandwagon, 3D-STE was introduced in 2008. Experimental studies and clinical investigations revealed the reliability and feasibility of 3D-STE-derived data. In addition, 3D-STE provides a novel deformation parameter, area change ratio, which have the potential for more accurate assessment of overall and regional myocardial function. In this review, we introduced the features of the methodology, validation, and clinical application of 3D-STE based on our experiences for 7 years.

Keywords

References

  1. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 2004;17:1021-9. https://doi.org/10.1016/j.echo.2004.06.019
  2. Perk G, Tunick PA, Kronzon I. Non-Doppler two-dimensional strain imaging by echocardiography--from technical considerations to clinical applications. J Am Soc Echocardiogr 2007;20:234-43. https://doi.org/10.1016/j.echo.2006.08.023
  3. Kawagishi T. Speckle tracking for assessment of cardiac motion and dyssynchrony. Echocardiography 2008;25:1167-71. https://doi.org/10.1111/j.1540-8175.2008.00790.x
  4. Elen A, Choi HF, Loeckx D, Gao H, Claus P, Suetens P, Maes F, D'hooge J. Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans Med Imaging 2008;27:1580-91. https://doi.org/10.1109/TMI.2008.2004420
  5. Crosby J, Amundsen BH, Hergum T, Remme EW, Langeland S, Torp H. 3-D speckle tracking for assessment of regional left ventricular function. Ultrasound Med Biol 2009;35:458-71. https://doi.org/10.1016/j.ultrasmedbio.2008.09.011
  6. Takeguchi T, Nishiura M, Abe Y, Ohuchi H, Kawagishi T. Practical considerations for a method of rapid cardiac function analysis based on three-dimensional speckle tracking in a three-dimensional diagnostic ultrasound system. J Med Ultrason 2010;37:41-9. https://doi.org/10.1007/s10396-009-0249-8
  7. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, Nesser HJ, Khandheria B, Narula J, Sengupta PP. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 2010;23:351-69; quiz 453-5. https://doi.org/10.1016/j.echo.2010.02.015
  8. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K. Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2009;2:451-9. https://doi.org/10.1161/CIRCIMAGING.109.858480
  9. Duan Q, Parker KM, Lorsakul A, Angelini ED, Hyodo E, Homma S, Holmes JW, Laine AF. Quantitative validation of optical flow based myocardial strain measures using sonomicrometry. Proc IEEE Int Symp Biomed Imaging 2009;2009:454-7.
  10. Yodwut C, Weinert L, Klas B, Lang RM, Mor-Avi V. Effects of frame rate on three-dimensional speckle-tracking-based measurements of myocardial deformation. J Am Soc Echocardiogr 2012;25:978-85. https://doi.org/10.1016/j.echo.2012.06.001
  11. Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ; Chamber Quantification Writing Group; American Society of Echocardiography's Guidelines and Standards Committee; European Association of Echocardiography. Recommendations for chamber quantification: a report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63. https://doi.org/10.1016/j.echo.2005.10.005
  12. Jasaityte R, Heyde B, D'hooge J. Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr 2013;26:15-28. https://doi.org/10.1016/j.echo.2012.10.005
  13. Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K. Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 2011;4:358-65. https://doi.org/10.1016/j.jcmg.2010.12.007
  14. Heyde B, Bouchez S, Thieren S, Vandenheuvel M, Jasaityte R, Bar-bosa D, Claus P, Maes F, Wouters P, D'Hooge J. Elastic image registration to quantify 3-D regional myocardial deformation from volumetric ultrasound: experimental validation in an animal model. Ultrasound Med Biol 2013;39:1688-97. https://doi.org/10.1016/j.ultrasmedbio.2013.02.463
  15. Ashraf M, Zhou Z, Nguyen T, Ashraf S, Sahn DJ. Apex to base left ventricular twist mechanics computed from high frame rate two-dimensional and three-dimensional echocardiography: a comparison study. J Am Soc Echocardiogr 2012;25:121-8. https://doi.org/10.1016/j.echo.2011.09.001
  16. Kawamura R, Seo Y, Ishizu T, Atsumi A, Yamamoto M, Machino-Ohtsuka T, Nakajima H, Sakai S, Tanaka YO, Minami M, Aonuma K. Feasibility of left ventricular volume measurements by three-dimensional speckle tracking echocardiography depends on image quality and degree of left ventricular enlargement: validation study with cardiac magnetic resonance imaging. J Cardiol 2014;63:230-8. https://doi.org/10.1016/j.jjcc.2013.08.010
  17. Nesser HJ, Mor-Avi V, Gorissen W, Weinert L, Steringer-Mascherbauer R, Niel J, Sugeng L, Lang RM. Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J 2009;30:1565-73. https://doi.org/10.1093/eurheartj/ehp187
  18. Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, Maehama T, Kawamoto T, Neishi Y, Yoshida K. Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 2009;22:1025-30. https://doi.org/10.1016/j.echo.2009.05.021
  19. Maffessanti F, Nesser HJ, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W, Sugeng L, Lang RM, Mor-Avi V. Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol 2009;104:1755-62. https://doi.org/10.1016/j.amjcard.2009.07.060
  20. Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-Rande JL, Jean-François D, Gueret P, Lim P. Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. Am J Cardiol 2012;109:180-6. https://doi.org/10.1016/j.amjcard.2011.08.030
  21. Matsumoto K, Tanaka H, Kaneko A, Ryo K, Fukuda Y, Tatsumi K, Kawai H, Hirata K. Contractile reserve assessed by three-dimensional global circumferential strain as a predictor of cardiovascular events in patients with idiopathic dilated cardiomyopathy. J Am Soc Echocardiogr 2012;25:1299-308. https://doi.org/10.1016/j.echo.2012.09.018
  22. Wu VC, Takeuchi M, Otani K, Haruki N, Yoshitani H, Tamura M, Abe H, Lin FC, Otsuji Y. Effect of through-plane and twisting motion on left ventricular strain calculation: direct comparison between two-dimensional and three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 2013;26:1274-81.e4. https://doi.org/10.1016/j.echo.2013.07.006
  23. Luo XX, Fang F, Lee AP, Sun JP, Li S, Zhang ZH, Sanderson JE, Kwong JS, Zhang Q, Wang J, Yu CM. What can three-dimensional speckle-tracking echocardiography contribute to evaluate global left ventricular systolic performance in patients with heart failure? Int J Cardiol 2014;172:132-7. https://doi.org/10.1016/j.ijcard.2013.12.314
  24. Seo Y, Ishizu T, Atsumi A, Kawamura R, Aonuma K. Three-dimensional speckle tracking echocardiography. Circ J 2014;78:1290-301. https://doi.org/10.1253/circj.CJ-14-0360
  25. Ishizu T, Seo Y, Kameda Y, Kawamura R, Kimura T, Shimojo N, Xu D, Murakoshi N, Aonuma K. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension 2014;63:500-6. https://doi.org/10.1161/HYPERTENSIONAHA.113.02149
  26. Galderisi M, Esposito R, Schiano-Lomoriello V, Santoro A, Ippolito R, Schiattarella P, Strazzullo P, de Simone G. Correlates of global area strain in native hypertensive patients: a three-dimensional speckle-tracking echocardiography study. Eur Heart J Cardiovasc Imaging 2012;13:730-8. https://doi.org/10.1093/ehjci/jes026
  27. Li CM, Li C, Bai WJ, Zhang XL, Tang H, Qing Z, Li R. Value of three-dimensional speckle-tracking in detecting left ventricular dysfunction in patients with aortic valvular diseases. J Am Soc Echocardiogr 2013;26:1245-52. https://doi.org/10.1016/j.echo.2013.07.018
  28. Miyoshi T, Tanaka H, Kaneko A, Tatsumi K, Matsumoto K, Minami H, Kawai H, Hirata KI. Left Ventricular Endocardial Dysfunction in Patients with Preserved Ejection Fraction after Receiving Anthracycline. Echocardiography 2013. [Epub ahead of print]
  29. Kleijn SA, Aly MF, Terwee CB, van Rossum AC, Kamp O. Threedimensional speckle tracking echocardiography for automatic assessment of global and regional left ventricular function based on area strain. J Am Soc Echocardiogr 2011;24:314-21. https://doi.org/10.1016/j.echo.2011.01.014
  30. Baccouche H, Maunz M, Beck T, Fogarassy P, Beyer M. Echocardiographic assessment and monitoring of the clinical course in a patient with Tako-Tsubo cardiomyopathy by a novel 3D-speckle-tracking-strain analysis. Eur J Echocardiogr 2009;10:729-31. https://doi.org/10.1093/ejechocard/jep064
  31. Seo Y, Yamasaki H, Kawamura R, Ishizu T, Igarashi M, Sekiguchi Y, Tada H, Aonuma K. Left ventricular activation imaging by 3-dimensional speckle-tracking echocardiography. Comparison with electrical activation mapping. Circ J 2013;77:2481-9. https://doi.org/10.1253/circj.CJ-13-0380
  32. Auricchio A, Fantoni C, Regoli F, Carbucicchio C, Goette A, Geller C, Kloss M, Klein H. Characterization of left ventricular activation in patients with heart failure and left bundle-branch block. Circulation 2004;109:1133-9. https://doi.org/10.1161/01.CIR.0000118502.91105.F6
  33. Kjaergaard J, Akkan D, Iversen KK, Kober L, Torp-Pedersen C, Hassager C. Right ventricular dysfunction as an independent predictor of short- and long-term mortality in patients with heart failure. Eur J Heart Fail 2007;9:610-6. https://doi.org/10.1016/j.ejheart.2007.03.001
  34. Chrysohoou C, Antoniou CK, Kotrogiannis I, Metallinos G, Aggelis A, Andreou I, Brili S, Pitsavos C, Stefanadis C. Role of right ventricular systolic function on long-term outcome in patients with newly diagnosed systolic heart failure. Circ J 2011;75:2176-81. https://doi.org/10.1253/circj.CJ-11-0296
  35. Guendouz S, Rappeneau S, Nahum J, Dubois-Rande JL, Gueret P, Monin JL, Lim P, Adnot S, Hittinger L, Damy T. Prognostic significance and normal values of 2D strain to assess right ventricular systolic function in chronic heart failure. Circ J 2012;76:127-36. https://doi.org/10.1253/circj.CJ-11-0778
  36. Atsumi A, Ishizu T, Kameda Y, Yamamoto M, Harimura Y, Machino- Ohtsuka T, Kawamura R, Enomoto M, Seo Y, Aonuma K. Application of 3-dimensional speckle tracking imaging to the assessment of right ventricular regional deformation. Circ J 2013;77:1760-8. https://doi.org/10.1253/circj.CJ-12-1445
  37. Gayat E, Ahmad H, Weinert L, Lang RM, Mor-Avi V. Reproducibility and inter-vendor variability of left ventricular deformation measurements by three-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 2011;24:878-85. https://doi.org/10.1016/j.echo.2011.04.016

Cited by

  1. Evaluation of myocardial infarction size with three-dimensional speckle tracking echocardiography: a comparison with single photon emission computed tomography vol.31, pp.8, 2014, https://doi.org/10.1007/s10554-015-0745-4
  2. Current Clinical Applications of Three-Dimensional Echocardiography: When the Technique Makes the Difference vol.18, pp.11, 2014, https://doi.org/10.1007/s11886-016-0787-9
  3. Assessing the Performance of Ultrafast Vector Flow Imaging in the Neonatal Heart via Multiphysics Modeling and In Vitro Experiments vol.63, pp.11, 2016, https://doi.org/10.1109/tuffc.2016.2596804
  4. Longitudinal strain bull’s eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy vol.21, pp.21, 2014, https://doi.org/10.1186/s40001-016-0216-y
  5. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography vol.33, pp.12, 2014, https://doi.org/10.1007/s10554-017-1199-7
  6. Effects of increased left ventricular wall thickness on the myocardium in severe aortic stenosis with normal left ventricular ejection fraction: Two- and three-dimensional multilayer speckle tracking vol.34, pp.4, 2014, https://doi.org/10.1111/echo.13474
  7. Echocardiographic Techniques of Deformation Imaging in the Evaluation of Maternal Cardiovascular System in Patients with Complicated Pregnancies vol.2017, pp.None, 2014, https://doi.org/10.1155/2017/4139635
  8. Global and Regional Longitudinal Strains Predict Left Ventricular Dysfunction after Mitral Valve Repair: A Two Dimensional Speckle Tracking Study vol.5, pp.1, 2014, https://doi.org/10.5812/rijm.41456
  9. Magnetic Resonance Imaging of Myocardial Strain After Acute ST-Segment–Elevation Myocardial Infarction : A Systematic Review vol.10, pp.8, 2014, https://doi.org/10.1161/circimaging.117.006498
  10. Comparison of two-dimensional and three-dimensional echocardiographic strain in children with CHD vol.27, pp.8, 2014, https://doi.org/10.1017/s1047951117000762
  11. Quantification of mechanical dyssynchrony in growth restricted fetuses and normal controls using speckle tracking echocardiography (STE) vol.45, pp.7, 2017, https://doi.org/10.1515/jpm-2016-0280
  12. Quantification of mechanical dyssynchrony in growth restricted fetuses and normal controls using speckle tracking echocardiography (STE) vol.45, pp.7, 2017, https://doi.org/10.1515/jpm-2016-0280
  13. The impact of preload on 3-dimensional deformation parameters: principal strain, twist and torsion vol.15, pp.1, 2014, https://doi.org/10.1186/s12947-017-0111-x
  14. Value of three-dimensional speckle tracking echocardiography to assess left ventricular function in hyperuricemia patients vol.37, pp.9, 2014, https://doi.org/10.1007/s10067-018-4132-0
  15. Association of impaired endothelial glycocalyx with arterial stiffness, coronary microcirculatory dysfunction, and abnormal myocardial deformation in untreated hypertensives vol.20, pp.4, 2014, https://doi.org/10.1111/jch.13236
  16. Identification of significant coronary artery disease in patients with non-ST segment elevation acute coronary syndrome by myocardial strain analyses using three-dimensional speckle tracking echocardi vol.35, pp.12, 2014, https://doi.org/10.1111/echo.14181
  17. Relation of blood pressure variability to left ventricular function and arterial stiffness in hypertensive patients vol.60, pp.8, 2014, https://doi.org/10.11622/smedj.2019030
  18. Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure vol.7, pp.1, 2014, https://doi.org/10.3390/bioengineering7010002
  19. Quantitative evaluation of subclinical left ventricular dysfunction in patients with type 2 diabetes mellitus by three-dimensional echocardiography vol.36, pp.7, 2020, https://doi.org/10.1007/s10554-020-01833-5