DOI QR코드

DOI QR Code

Importance of Colloidal 210Pb and 210Po in Groundwater of Subterranean Estuary

해저 하구의 지하수 중 콜로이드 상 210Pb과 210Po의 중요성

  • Kim, Tae-Hoon (University of South Carolina, Biological Science Department, Marine Science Program) ;
  • Kim, Intae (Division of Polar Ocean Environment, Korea Polar Research Institute (KOPRI), KIOST)
  • 김태훈 ;
  • 김인태 (한국해양과학기술원 부설 극지연구소 극지해양환경연구부)
  • Received : 2014.04.08
  • Accepted : 2014.05.14
  • Published : 2014.05.28

Abstract

In order to evaluate the distributions of colloidal $^{210}Pb$ (half life = 22.2 years) and $^{210}Po$ (half life = 138 days) in subterranean estuary, we have measured $^{210}Pb$ and $^{210}Po$, for the first time, in the total dissolved (< $0.45{\mu}m$), true dissolved (<10 kDa), and colloidal ($10kDa-0.45{\mu}m$) phases in subterranean estuary of Hampyeong Bay in July 2010 and of Jeju Island in January 2011. The $^{210}Pb$ and $^{210}Po$ activities in groundwater were in the ranges of $0.21-2.52mBqL^{-1}$ and $0.12-2.07mBqL^{-1}$ for true dissolved phase and $0.10-1.71mBqL^{-1}$ and $0.03-0.97mBqL^{-1}$ for colloidal phase, respectively. The proportions of the colloidal phase to the total dissolved phase were $40{\pm}5%$ for $^{210}Pb$ and $28{\pm}5%$ for $^{210}Po$ in groundwater. This result indicates that colloids may play an important role in transporting trace elements through subterranean estuary into the coastal ocean.

해저 하구의 자하수 중 콜로이드 상 $^{210}Pb$ (반감기: 22.2년)과 $^{210}Po$ (반감기: 138일)의 분포 특성을 알아내기 위해서, 용존 상(<10 kDa)과 콜로이드 상($10kDa-0.45{\mu}m$)의 $^{210}Pb$$^{210}Po$ 시료를 채취하여 측정하였다. 함평만(2010년 7월)과 제주도(2011년 1월)의 연안 지하수 중 용존 상 $^{210}Pb$의 농도는 $0.21-2.52mBqL^{-1}$ 범위를 보였고, 콜로이드 상에서는 $0.10-1.71mBqL^{-1}$ 범위를 보였다. 용존 상 $^{210}Po$의 농도는 $0.12-2.07mBqL^{-1}$ 범위를 보였고, 콜로이드 상에서는 $0.03-0.97mBqL^{-1}$ 범위를 보였다. 총 용존 상에서 콜로이드 상 $^{210}Pb$$^{210}Po$의 비율은 각각 $40{\pm}5%$$28{\pm}5%$를 차지하였다. 이 결과는 해저를 통한 미량 원소의 해양 유출에 콜로이드가 중요한 역할을 한다는 것을 나타낸다.

Keywords

References

  1. Bonotto, D.M. and T.O. Bueno, 2008. The natural radioactivity in Guarani aquifer groundwater, Brazil. Appl. Radiat. Isot., 66: 1507-1522. https://doi.org/10.1016/j.apradiso.2008.03.008
  2. Charette, M.A. and E.R. Sholkovitz, 2002. Oxidative precipitation of groundwater-derived ferrous iron in the subterranean estuary of a coastal bay. Geophys. Res. Lett., 29: doi:10.1029/2001GL014512.
  3. Cherry, R.D., S.W. Fowler, T.M. Beasley and M. Heyraud, 1975. Polonium-210: its vertical oceanic transport by zooplankton metabolic activity. Mar. Chem., 3: 105-110. https://doi.org/10.1016/0304-4203(75)90017-1
  4. Cochran, J.K., M. Bacon, S. Krishnaswami and K. Turekian, 1983. $^{210}Po$ and $^{210}Pb$ distributions in the central and eastern Indian Ocean. Earth Planet. Sci. Lett., 17: 295-273.
  5. Farley, K.J. and F.M.M. Morel, 1986. The role of coagulation in the kinetics of sedimentation. Environ. Sci. Technol., 20: 187-195. https://doi.org/10.1021/es00144a014
  6. Fowler, S.W. and G.A. Knauer, 1986. Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog. Oceanogr., 16: 147-194. https://doi.org/10.1016/0079-6611(86)90032-7
  7. Friedrich, J. and M. Rutgers van der Loeff, 2002. A two tracer ($^{210}Po$-234Th) to distinguish organic carbon and biogenic silica export flux in the Antarctic Circumpolar Current. Deep-Sea Res., 49: 101-120. https://doi.org/10.1016/S0967-0637(01)00045-0
  8. Guo, L. and P.H. Santschi, 1997. Composition and cycling of colloids in marine environments. Rev. Geophys., 35: 17-40. https://doi.org/10.1029/96RG03195
  9. Honeyman, B.D. and P.H. Santschi, 1991. Coupling adsorption and particle aggregation: Laboratory studies of "colloidal pumping" using $^{59}Fe$-labelled hematite. Environ. Sci. Technol., 25: 1739-1747. https://doi.org/10.1021/es00022a010
  10. Kadko, D., 1993. Excess $^{210}Po$ and nutrient cycling within the California coastal transition zone. J. Geophys. Res., 98: 857-864. https://doi.org/10.1029/92JC01932
  11. Kersting, A.B., D.W. Efurd, D.L. Finnegan, D.J. Rokop, D.K. Smith and J.L. Thompson, 1999. Migration of plutonium in ground water at the Nevada Test Site. Nature, 397: 56-59. https://doi.org/10.1038/16231
  12. Kim, G., K. Lee, K. Park, D. Hwang and H. Yang, 2003. Large submarine groundwater discharge (SGD) from a volcanic island. Geophys. Res. Lett., 30: doi:2010.1029/2003GL018378.
  13. Kim, G., 2001. Large deficiency of polonium in the oligotrophic oceans interior. Earth Planet. Sci. Lett., 192: 15-21. https://doi.org/10.1016/S0012-821X(01)00431-9
  14. Kim, G., T.H. Kim and T.M. Church, 2011. Po-210 in the environment: Biogeochemical cycling and bioavailability. In: Handbook of Environmental Isotope Geochemistry, edited by M. Baskaran, Springer-Verlag, Berlin, pp. 271-284.
  15. Kim, T.H. and G. Kim, 2012. Important role of colloids on the removal of $^{210}Po$ and $^{210}Pb$ in the ocean: Results from the East/Japan Sea. Geochim. Cosmochim. Acta, 95: 134-142. https://doi.org/10.1016/j.gca.2012.07.029
  16. Kim, T.H., H. Waska, E.H. Kwon, I.G.N. Suryaputra and G. Kim, 2012. Production, degradation, and flux of dissolved organic matter in the subterranean estuary of a large tidal flat. Mar. Chem., 142: 1-10.
  17. Kim, T.H., E. Kwon, I. Kim, S.A. Lee and G. Kim, 2013. Dissolved organic matter in the subterranean estuary of a volcanic island, Jeju: Importance of dissolved organic nitrogen fluxes to the ocean. J. Sea Res., 78: 18-24. https://doi.org/10.1016/j.seares.2012.12.009
  18. Masque, P., J.A. Sanchez-Cabeza, J.M. Bruach, E. Palacios and M. Canals, 2002. Balance and residence times of Pb-210 and Po-210 in surface waters of the northwestern Mediterranean Sea. Cont. Shelf Res., 22: 2127-2146. https://doi.org/10.1016/S0278-4343(02)00074-2
  19. Moore, W.S., 1999. The subterranean estuary: a reaction zone of ground water and sea water. Mar. Chem. 65: 111-125. https://doi.org/10.1016/S0304-4203(99)00014-6
  20. Murray, J.W., B. Paul, J.P. Dunne and T. Chapin, 2005. $^{234}Th$, $^{210}Pb$, $^{210}Po$ and stable Pb in the central equatorial Pacific: Tracers for particle cycling. Deep-Sea Res. I, 52: 2109-2139. https://doi.org/10.1016/j.dsr.2005.06.016
  21. Nozaki, Y., J. Zhang and A. Takeda, 1997. $^{210}Pb$ and $^{210}Po$ in the equatorial Pacific and the Bering Sea: The effects of biological productivity and boundary scavenging. Deep-Sea Res., 44: 2203-2220.
  22. Pan, B., S. Ghosh and B. Xing, 2008. Dissolved organic matter conformation and its interaction with Pyrene as affected by water chemistry and concentration. Environ. Sci. Technol., 42(5): 1594-1599. https://doi.org/10.1021/es702431m
  23. Ruberu, S.R., Y.G. Liu and S.K. Perera, 2007. Occurrence and distribution of $^{210}Pb$ and $^{210}Po$ in selected California groundwater wells. Health Phys., 92: 432-441. https://doi.org/10.1097/01.HP.0000254883.26386.9b
  24. Sanudo-Wilhelmy, S.A., F.K. Rossi, H. Bokuniewicz and R.J. Paulsen, 2002. Trace metal levels in uncontaminated groundwater of a coastal watershed: importance of colloidal forms. Environ. Sci. Technol., 36: 1435-1441. https://doi.org/10.1021/es0109545
  25. Shimmield, G.B., G.D. Ritchie and T.W. Fileman, 1995. The impact of marginal ice zone processes on the distribution of $^{210}Pb$, $^{210}Po$, and $^{234}Th$ and implications for new production in the Bellingshausen Sea, Antarctica. Deep-Sea Res. ІІ, 42: 1313-1335.
  26. Stewart, G.M., S.W. Fowler, J.-L. Teyssie, O. Cotret, J.K. Cochran and N.S. Fisher, 2005. Contrasting transfer of polonium-210 and lead-210 across three trophic levels in marine plankton. Mar. Ecol. Prog. Ser., 290: 27-33. https://doi.org/10.3354/meps290027
  27. Stewart, G.M., S.B. Moran and M.W. Lomas, 2010. Seasonal POC fluxes at BATS estimated from $^{210}Po$ deficits. Deep-Sea Res. I, 57: 113-124. https://doi.org/10.1016/j.dsr.2009.09.007
  28. Swarzenski, P.W., B.A. McKee, K. Sorensen and J.F. Todd, 1999. $^{210}Pb$ and $^{210}Po$, manganese and iron cycling across the $O_2/H_2S$ interface of a permanently stratified Fjord: Framvaren, Norway. Mar. Chem., 67: 199-217. https://doi.org/10.1016/S0304-4203(99)00059-6
  29. Swarzenski, P.W., W.G. Orem, B.F. McPherson, M. Baskaran and Y. Wan, 2006. Biogeochemical transport in the Loxahatchee river estuary: The role of submarine groundwater discharge. Mar. Chem., 101: 248-265. https://doi.org/10.1016/j.marchem.2006.03.007
  30. Waska, H. and G. Kim, 2011. Submarine groundwater discharge (SGD) as a main nutrient source for benthic and water-column primary production in a large intertidal environment of the Yellow Sea. J. Sea Res., 65: 103-113. https://doi.org/10.1016/j.seares.2010.08.001
  31. Wei, C.-L. and J.W. Murray, 1994. The behavior of scavenged isotopes in marine anoxic environments: $^{210}Pb$ and $^{210}Po$ in the water column of the Black Sea. Geochim. Cosmochim. Acta, 58: 1795-1811. https://doi.org/10.1016/0016-7037(94)90537-1

Cited by

  1. Bio-accumulation of210Pb and210Po within the Trophic Level of Phytoplankton-Zooplankton-Anchovy-Mackerel in the Coastal Water of the Jeju Island, Korea vol.38, pp.2, 2016, https://doi.org/10.4217/OPR.2016.38.2.139