DOI QR코드

DOI QR Code

국부적 불연속을 갖는 도파관을 따라 전파되는 파동에 대한 파수 영역 유한 요소 해석

Propagation of Structural Waves along Waveguides with Non-Uniformities Using Wavenumber Domain Finite Elements

  • Ryue, Jungsoo (School of Naval Architecture and Ocean Engineering, University of Ulsan)
  • 투고 : 2014.02.07
  • 심사 : 2014.04.15
  • 발행 : 2014.05.31

초록

파이프, 평판과 같이 단면의 형상이 길이 방향으로 일정한 도파관 구조물을 따라 전파되는 진동의 반사 및 투과 특성은 여러 공학 분야에서 응용되는 중요한 주제이다. 도파관에 조인트 또는 균열 등의 국부적 불연속이 있는 경우, 스펙트럴 요소(spectral element)와 유한 요소(finite elment)를 결합한 SE/FE 방법이 주로 사용되고 있다. 그러나 이 방법은 보 이론에 기반한 스펙트럴 요소가 사용되므로 저주파수 대역 해석에 국한되는 단점이 있다. 고주파수 대역 해석에는 스펙트럴 수퍼 요소(spectral super element)와 유한 요소를 결합한 SSE/FE 방법이 제안되었으나 유한요소와 스펙트럼 요소의 연성으로 인해 많은 연산 시간이 요구된다. 이러한 문제점을 개선하고자, 본 연구에서는 국부적 불연속 구간의 단면이 일정한 경우에 대해 국부적 불연속 구간을 스펙트럴 수퍼 요소로 대체한 SSE/SSE 연성 해석을 시도하였다. 적용 모델로는 국부적 결함을 가진 레일의 파동 반사 및 투과, 그리고 주기적 보강재를 가진 평판의 진동전파에 대해 적용하였다. 결함을 가진 레일의 해석 예를 통해, 본 논문에서 사용한 SSE/SSE 방법과 기존의 SSE/FE 방법의 성능을 비교하였다. 보강재를 가진 평판의 예를 통해서는 반복 구조를 가진 도파관의 파동 전파 특성 해석에 SSE/SSE 방법이 유용함을 확인하였다.

Wave reflection and transmission characteristics in waveguides are an important issue in many engineering applications. A combined spectral element and finite element (SE/FE) method is used to investigate the effects of local non-uniformities but limited at relatively low frequencies because the SE is formulated by using a beam theory. For higher frequency applications, a method named a combined spectral super element and finite element (SSE/FE) method was presented recently, replacing spectral elements with spectral super elements. This SSE/FE approach requires a long computing time due to the coupling of SSE and FE matrices. If a local non-uniformity has a uniform cross-section along its short length, the FE part could be further replaced by SSE, which improves performance of the combined SSE/FE method in terms of the modeling effort and computing time. In this paper SSEs are combined to investigate the characteristics of waves propagating along waveguides possessing geometric non-uniformities. Two models are regarded: a rail with a local defect and a periodically ribbed plate. In the case of the rail example, firstly, the results predicted by a combined SSE/FE method are compared with those from the combined SSEs in order to justify that the combined SSEs work properly. Then the SSEs are applied to a ribbed plate which has periodically repeated non-uniformities along its length. For the ribbed plate, the propagation characteristics are investigated in terms of the propagation constant.

키워드

참고문헌

  1. B. R. Mace, "Wave reflection and transmission in beams," J. Sound Vibration, 97, 237-246 (1984). https://doi.org/10.1016/0022-460X(84)90320-1
  2. J. F. Doyle and S. Kamle, "An experimental study of the reflection and transmission of flexural waves at discontinuities," J. Appl. Mech., 52, 669-673 (1985). https://doi.org/10.1115/1.3169119
  3. J. F. Doyle and S. Kamle, "An experimental study of the reflection and transmission of flexural waves at an arbitrary T-joint," J. Appl. Mech., 54, 136-140 (1987). https://doi.org/10.1115/1.3172947
  4. J. F. Doyle, Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms, (Springer, New York,1997), pp. 173-190.
  5. S. Gopalakrishnan, A. Chakraborty and D. Roy Mahapatra, Spectral Finite Element Method:Wave Propagation, Diagnostics and Control in Anisotropic and Inhomogeneous Structures, (Springer, London, 2007), pp. 123-193.
  6. S. P. Shone, B. R. Mace and T. P. Waters, "Reflection of waves from cracks in beams," ISMA 26th conference, paper no. 206 (2004).
  7. S. P. Shone, B. R. Mace and T. P. Waters, "Damage assessment of beams using flexural wave reflection coefficients," Key Eng. Mater. 347, 193-198 (2007). https://doi.org/10.4028/www.scientific.net/KEM.347.193
  8. J. Ryue, D. J, Thompson, P. R. White and D. R. Thompson, "Wave reflection and transmission due to defects in infinite structural waveguides at high frequencies," J. Sound Vibration, 330, 1737-1753 (2011). https://doi.org/10.1016/j.jsv.2010.10.034
  9. L. Gavric, "Computation of propagative waves in free rail using a finite element technique," J. Sound Vibration, 183, 531-543 (1995).
  10. C.-M. Nilsson, Waveguide finite elements applied on a car tyre, (Ph.D. Thesis, KTH, 2004).
  11. S. Finnveden, "Evaluation of modal density and group velocity by a finite element method", J. Sound Vibration, 273, 51-75 (2004). https://doi.org/10.1016/j.jsv.2003.04.004
  12. D. J. Mead, "A general theory of harmonic wave propagation in linear periodic systems with multiple coupling," J. Sound Vibration, 27, 235-260 (1973). https://doi.org/10.1016/0022-460X(73)90064-3
  13. D. J. Mead, "The harmonic response of uniform beams on multiple linear supports: a flexural wave analysis," J. Sound Vibration, 141, 465-484 (1990). https://doi.org/10.1016/0022-460X(90)90639-H
  14. M. A. Heckl, "Coupled waves on a periodically supported Timoshenko beam," J. Sound Vibration, 252, 849-882 (2002). https://doi.org/10.1006/jsvi.2001.3823
  15. D. J. Mead, "A new method of analyzing wave propagation in periodic structures: applications to periodic Timoshencko beams and stiffened plates," J. Sound Vibration, 104, 9-27 (1986). https://doi.org/10.1016/S0022-460X(86)80128-6
  16. F. Birgersson, S. Finnveden and C.-M. Nilsson, "A spectral super element for modelling of plate vibration. Part 1: general theory," J. Sound Vibration, 287, 297-314 (2005). https://doi.org/10.1016/j.jsv.2004.11.012
  17. W. X. Zhong and F. W. Williams, "On the direct solution of wave propagation for repetitive structures," J. Sound Vibration, 181, 485-501 (1995). https://doi.org/10.1006/jsvi.1995.0153
  18. B. R. Mace, D. Duhamel, M. J. Brennan and L. Hinke, "Finite element prediction of wave motion in structural waveguides," J. Acoust. Soc. Am. 117, 2835-2843 (2005). https://doi.org/10.1121/1.1887126
  19. J. Ryue, D. J, Thompson, P. R. White and D. R. Thompson, "Investigation of propagating wave types in railway tracks at high frequencies," J. Sound Vibrationn, 315, 157-175 (2008). https://doi.org/10.1016/j.jsv.2008.01.054
  20. X. Sheng and M. H. Li, "Propagation constants of railway tracks as a periodic structure," J. Sound Vibration, 299, 1114-1123 (2007). https://doi.org/10.1016/j.jsv.2006.08.010