References
- Chen, X.F. and Yang, S.J. (2004), "The construction of wavelet finite element and its application", Finite Elem. Anal. Des., 40, 541-554. https://doi.org/10.1016/S0168-874X(03)00077-5
- Castrillon-Candas, J. and Amaratunga, K. (2003), "Spatially adapted multiwavelets and sparse representation of integral equations on general geometries", SIAM J. Sci. Comput., 24(5), 1530-1566. https://doi.org/10.1137/S1064827501371238
- Han, J.G., Ren, W.X. and Huang, Y. (2005), "A multivariable wavelet-based finite element method and its application to thick plates", Finite Elem. Anal. Des., 41, 821-833. https://doi.org/10.1016/j.finel.2004.11.001
- He, Y.M. and Chen, X.F. (2007), "Adaptive multiresolution finite element method based on second generation wavelets", Finite Elem. Anal. Des., 43, 566-579. https://doi.org/10.1016/j.finel.2006.12.009
- He, W.Y. and Ren, W.X. (2012), "Finite element analysis of beam structures based on trigonometric wavelet", Finite Elem. Anal. Des., 51, 59-66. https://doi.org/10.1016/j.finel.2011.11.005
- Ma, J.X. and Xue, J.J. (2003), "A study of the construction and application of a Daubechies wavelet-based beam element", Finite Elem. Anal. Des., 39, 965-975. https://doi.org/10.1016/S0168-874X(02)00141-5
- Mehra, M. and Kevlahan, N.K.R. (2008), "An adaptive wavelet collocation method for the solution of partial differential equations on the sphere", J. Comput. Phys., 227(11), 5610-5632. https://doi.org/10.1016/j.jcp.2008.02.004
- Pinho, P., Ferreira, P.J.S.G. and Pereira, J.R. (2004), "Multiresolution analysis using biorthogonal and interpolating wavelets", IEEE Anten. Propag. Soc. Symp., 2, 1483-1486.
- Sun, H.Y., Di, S.L. and Zhang, N. (2003), "Micromechanics of braided composites via multivariable FEM", Comput Struct., 81(20), 2021-2027. https://doi.org/10.1016/S0045-7949(03)00228-1
- Shen, P.C. and Kan, H.B. (1992), "The multivariable spline element analysis for plate bending problems", Comput Struct., 40, 1343-1349.
- Shen, P.C. and He, P.X. (1995), "Bending analysis of plates and spherical-shells by multivariable spline element method based on generalized variational principle", Comput. Struct., 55, 151-157. https://doi.org/10.1016/0045-7949(94)00411-U
- Shen, P.C. and He, P.X. (1997), "Analysis of bending vibration and stability for thin plate on elastic foundation by the multivariable spline element method", Appl. Math. Mech., English Edition, 18, 779-787. https://doi.org/10.1007/BF00763130
- Sweldens, W. (1997), "The lifting scheme: a construction of second generation wavelets", SIAM J. Math. Anal., 29(2), 511-546.
- Sweldens, W. (1996), "The lifting scheme: a custom-design construction of biorthogonal wavelets", Appl. Comput Harm. Anal., 3(2),186-200. https://doi.org/10.1006/acha.1996.0015
- Vasilyev, O.V. and Bowman, C. (2000), "Second generation wavelet collocation method for the solution of partial differential equations", J. Comput. Phy., 165, 660-693. https://doi.org/10.1006/jcph.2000.6638
- Vasilyev, O.V. and Kevlahan, N.K.R. (2005), "An adaptive multilevel wavelet collocation method for elliptic problems", J. Comput. Phys., 206, 412-431. https://doi.org/10.1016/j.jcp.2004.12.013
- Wang, Y.B. and Yang, H.Z. (2006), "Second generation wavelet based on adaptive solution of wave equation", Int. J. Nonlin. Sci. Numer. Simul., 7(4), 435-438.
- Wang, Y.M., Chen, X.F. and He, Y.M. (2010), "New decoupled wavelet bases for multiresolution structural analysis", Struct. Eng. Mech. , 35(2), 175-190. https://doi.org/10.12989/sem.2010.35.2.175
- Wang, Y.M., Chen, X.F. and He, Z.J. (2012), "A second generation wavelet-based finite element method for the solution of partial differential equations", Appl. Math. Lett, 25(11), 1608-1613. https://doi.org/10.1016/j.aml.2012.01.021
- Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2006), "The construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval", Finite Elem. Anal. Des., 42(14-15), 1269-1280. https://doi.org/10.1016/j.finel.2006.06.006
- Xiang, J.W., Chen, X.F., He, Y.M. and He, Z.J. (2007), "Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval", Struct. Eng. Mech., 25(5), 613-629. https://doi.org/10.12989/sem.2007.25.5.613
- Xiang, J.W., Chen, X.F., He, Z.J. and Dong, H.B. (2007), "The construction of ID wavelet finite elements for structural analysis", Comput. Mech., 40(2), 325-339. https://doi.org/10.1007/s00466-006-0102-5
- Xiang, J.W. Chen, X.F., He, Z.J. and Zhang, Y.H. (2008), "A new wavelet-based thin plate element using Bspline wavelet on the interval", Comput. Mech., 41(2), 243-255.
- Xiang, J.W., Chen, X.F., Yang, L.F. and He, Z.J. (2008), "A class of wavelet-based flat shell elements using B-spline wavelet on the interval and its applications", CMES-Comput. Model. Eng Sci., 23(1), 1-12.
- Xiang, J.W., Chen, X.F. and Yang, L.F. (2009), "Crack identification in short shafts using wavelet-based element and neural networks", Struct Eng Mech., 33(5), 543-560. https://doi.org/10.12989/sem.2009.33.5.543
- Xiang, J.W., Chen, D.D., Chen, X.F. and He, Z.J. (2009), "A novel wavelet-based finite element method for the analysis ofrotor-bearing systems", Finite Elem. Anal. Des., 45, 908-916. https://doi.org/10.1016/j.finel.2009.09.001
- Yu, Z.G., Guo, X.L. and Chu, F.L. (2010), "Amultivariable hierarchical finite element method for static and vibration analysis of beams", Finite Elem. Anal. Des., 46, 625-631. https://doi.org/10.1016/j.finel.2010.03.002
- Zhang, W, Shi, L.Y. and Chen, Y. (2002), "A new perturbed multivariable finite element method with potential for DSAW computation in plates and layered solids", Commun. Numer. Method Eng, 18(12), 885-898. https://doi.org/10.1002/cnm.565
- Zhang, X.W. and Chen, X.F. (2010), "Multivariable finite elements based on B-spline wavelet on the interval for thin plate static and vibration analysis", Finite Elem. Anal. Des., 46, 416-427. https://doi.org/10.1016/j.finel.2010.01.002
- Zhang, W. and Chen, D.P. (1997), "The patch test conditions and some multivariable finite element formulations", Int J. Numer. Method Eng, 40(16), 3015-3032. https://doi.org/10.1002/(SICI)1097-0207(19970830)40:16<3015::AID-NME184>3.0.CO;2-1
- Zienkiewicz, O.C and Taylor, R.L. (2000), The Finite ElementMethod, Butterworth, Heinemann.
- Zupan, E., Zupan, D. and Saje, M. (2009), "The wavelet-based theory of spatial naturally curved and twisted linear beams", Comput. Mech., 43(5), 675-686. https://doi.org/10.1007/s00466-008-0337-4
Cited by
- Analysis of shallow hyperbolic shell by different kinds of wavelet elements based on B-spline wavelet on the interval vol.40, pp.3, 2016, https://doi.org/10.1016/j.apm.2015.09.036
- Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization vol.375, 2016, https://doi.org/10.1016/j.jsv.2016.04.018
- Adaptive-scale damage detection strategy for plate structures based on wavelet finite element model vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.239
- Static and dynamic analysis of cylindrical shell by different kinds of B-spline wavelet finite elements on the interval vol.36, pp.4, 2014, https://doi.org/10.1007/s00366-019-00804-2