DOI QR코드

DOI QR Code

Mechanical behavior of composite gel periodic structures with the pattern transformation

  • Hu, Jianying (International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University) ;
  • He, Yuhao (International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University) ;
  • Lei, Jincheng (International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University) ;
  • Liu, Zishun (International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University) ;
  • Swaddiwudhipong, Somsak (Department of Civil and Environmental Engineering, National University of Singapore)
  • Received : 2013.12.27
  • Accepted : 2014.02.27
  • Published : 2014.06.10

Abstract

When the periodic cellular structure is loaded or swelling beyond the critical value, the structure may undergo a pattern transformation owing to the local elastic instabilities, thus leading to structural collapse and the structure changing to a new configuration. Based on this deformation-triggered pattern, we have proposed the novel composite gel materials. This designed material is a type of architectural material possessing special mechanical properties. In this study, the mechanical behavior of the composite gel periodic structure with various gel inclusions is studied further through numerical simulations. When pattern transformation occurs, it results in a different elastic relationship compared with the material at untransformed state. Based on the obtained nominal stress versus nominal strain behavior, the Poisson's ratio and corresponding deformed structure patterns, we investigate the performance of designed composite materials and the effects of the uniformly distributed gel inclusions on composite materials. A better understanding of the characteristics of these composite gel materials is a key to develop its potential applications on new soft machines.

Keywords

References

  1. Alderson, A., Alderson, K.L., Attard, D., Evans, K.E., Gatt, R., Grima, J.N., Miller, W., Ravirala, N., Smith, C.W. and Zied, K. (2010), "Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading", Compos. Sci. Tech, 70(7), 1042-1048. https://doi.org/10.1016/j.compscitech.2009.07.009
  2. Barnes, D.L., Miller, W., Evans, K.E. and Marmier, A. (2012), "Modelling negative linear compressibility in tetragonal beam structures", Mech. Mater., 46, 123-128. https://doi.org/10.1016/j.mechmat.2011.12.007
  3. Berger, H., Kari, S., Gabbert, U., Rodriguez-Ramos, R., Guinovart, R., Otero, J. A. and Bravo-Castillero, J. (2005), "An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites", Int. J. Solid. Struct., 42(21-22), 5692-5714. https://doi.org/10.1016/j.ijsolstr.2005.03.016
  4. Bertoldi, K. and Boyce, M. (2008), "Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures", Phys. Rev. B, 77(5), 052105.
  5. Bertoldi, K. and Boyce, M. C. (2007), "Mechanics of the hysteretic large strain behavior of mussel byssus threads", J. Mater. Sci., 42(21), 8943-8956. https://doi.org/10.1007/s10853-007-1649-z
  6. Bertoldi, K., Boyce, M. C., Deschanel, S., Prange, S. M. and Mullin, T. (2008), "Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures", J. Mech. Phys. Solid., 56(8), 2642-2668. https://doi.org/10.1016/j.jmps.2008.03.006
  7. Bertoldi, K. and Gei, M. (2011), "Instabilities in multilayered soft dielectrics", J. Mech. Phys. Solid., 59(1), 18-42. https://doi.org/10.1016/j.jmps.2010.10.001
  8. Bertoldi, K., Reis, P.M., Willshaw, S. and Mullin, T. (2010), "Negative Poisson's Ratio Behavior Induced by an Elastic Instability", Adv. Mater., 22(3), 361-366. https://doi.org/10.1002/adma.200901956
  9. Cai, S., Bertoldi, K., Wang, H. and Suo, Z. (2010), "Osmotic collapse of a void in an elastomer: breathing, buckling and creasing", Soft Matter, 6(22), 5770-5777. https://doi.org/10.1039/c0sm00451k
  10. Ding, Z.W., Liu, Z.S., Hu, J.Y., Swaddiwudhipong, S. and Yang, Z.Z. (2013), "Inhomogeneous large deformation study of temperature-sensitive hydrogel", Int. J. Solid. Struct., 50(16-17), 2610-2619. https://doi.org/10.1016/j.ijsolstr.2013.04.011
  11. Gaspar, N., Smith, C.W., Alderson, A., Grima, J.N. and Evans, K.E. (2011), "A generalised three-dimensional tethered-nodule model for auxetic materials", J. Mater. Sci., 46(2), 372-384. https://doi.org/10.1007/s10853-010-4846-0
  12. Geus, T.W.J.d. (2011) "Pattern transformation of three-dimensional periodic structures", Harvard University, Cambridge Massachusetts, United States.
  13. Hong, W., Liu, Z.S., and Suo, Z.G. (2009), "Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load", Int. J. Solid. Struct., 46(17), 3282-3289. https://doi.org/10.1016/j.ijsolstr.2009.04.022
  14. Hong, W., Zhao, X.H., Zhou, J.X. and Suo, Z.G. (2008), "A theory of coupled diffusion and large deformation in polymeric gels", J. Mech. Phys. Solid., 56(5), 1779-1793. https://doi.org/10.1016/j.jmps.2007.11.010
  15. Hu, J. Y., He, Y.H., Lei, J.C. and Liu, Z.S. (2013), "Novel mechanical behavior of periodic structure with the pattern transformation", Theo. Appl. Mech. Lett., 3, 054007. https://doi.org/10.1063/2.1305407
  16. Jang, J.H., Koh, C.Y., Bertoldi, K., Boyce, M.C. and Thomas, E.L. (2009), "Combining Pattern Instability and Shape-Memory Hysteresis for Phononic Switching", Nano Lett., 9(5), 2113-2119. https://doi.org/10.1021/nl9006112
  17. Kang, S.H., Shan, S., Noorduin, W.L., Khan, M., Aizenberg, J. and Bertoldi, K. (2013), "Buckling-Induced Reversible Symmetry Breaking and Amplification of Chirality Using Supported Cellular Structures", Adv. Mater., 25(24), 3380-3385. https://doi.org/10.1002/adma.201300617
  18. Li, B., Jia, F., Cao, Y.P., Feng, X.Q. and Gao, H.J. (2011), "Surface Wrinkling Patterns on a Core-Shell Soft Sphere", Phys. Rev. Lett., 106(23), 234301. https://doi.org/10.1103/PhysRevLett.106.234301
  19. Li, J., Shim, J., Deng, J., Overvelde, J.T.B., Zhu, X., Bertoldi, K. and Yang, S. (2012), "Switching periodic membranes via pattern transformation and shape memory effect", Soft Matter, 8(40), 10322. https://doi.org/10.1039/c2sm25816a
  20. Liu, Z.S., Swaddiwudhipong, S., Cui, F.S., Hong, W., Suo, Z.G. and Zhang, Y.W. (2011), "Analytical solutions of polymeric gel structures under buckling and wrinkle", Int. J. Appl. Mech., 3(2), 235-257. https://doi.org/10.1142/S1758825111000968
  21. Lopez-Pamies, O. and Castaneda, P.P. (2004), "Second-order homogenization estimates incorporating field fluctuations in finite elasticity", Math. Mech. Solid., 9(3), 243-270. https://doi.org/10.1177/1081286504038467
  22. Michel, J.C., Lopez-Pamies,O., Castaneda, P.P. and Triantafyllidis, N. (2007), "Microscopic and macroscopic instabilities in finitely strained porous elastomers", J. Mech. Phys. Solid., 55(5), 900-938. https://doi.org/10.1016/j.jmps.2006.11.006
  23. Miller, W., Smith, C.W. and Evans, K.E. (2011), "Honeycomb cores with enhanced buckling strength", Compos. Struct., 93(3), 1072-1077. https://doi.org/10.1016/j.compstruct.2010.09.021
  24. Mullin, T., Deschanel, S., Bertoldi, K. and Boyce, M. (2007), "Pattern Transformation Triggered by Deformation", Phys. Rev. Lett., 99(8), 084301. https://doi.org/10.1103/PhysRevLett.99.084301
  25. Mullin, T., Willshaw, S. and Box, F. (2013), "Pattern switching in soft cellular solids under compression", Soft Matter, 9(20), 4951-4955. https://doi.org/10.1039/c3sm27677e
  26. Shim, J., Perdigoub, C., Chenc, E.R., Bertoldia, K. and Reisb, P.M. (2012), "Buckling-induced encapsulation of structured elastic shells under pressure", Proceedings of the National Academy of Sciences of the United States of America, 109(16), 5978-5983. https://doi.org/10.1073/pnas.1115674109
  27. Singamaneni, S., Bertoldi, K., Chang, S., Jang, J.H., Thomas, E.L., Boyce, M.C. and Tsukruk, V.V. (2009a), "Instabilities and pattern transformation in periodic, porous elastoplastic solid coatings", ACS Appl. Mater. Interf., 1(1), 42-47. https://doi.org/10.1021/am800078f
  28. Singamaneni, S., Bertoldi, K., Chang, S., Jang, J.H., Young, S.L., Thomas, E.L., Boyce, M.C. and Tsukruk, V.V. (2009b), "Bifurcated mechanical behavior of deformed periodic porous solids", Adv. Func. Mater., 19(9), 1426-1436. https://doi.org/10.1002/adfm.200801675
  29. Theocaris, P.S., Stavroulakis, G.E. and Panagiotopoulos, P.D. (1997), "Negative Poisson's ratios in composites with star-shaped inclusions: a numerical homogenization approach", Arch. Appl. Mech., 67, 274-286. https://doi.org/10.1007/s004190050117
  30. Willshaw, S. and Mullin, T. (2012), "Pattern switching in two and three-dimensional soft solids", Soft Matter, 8(6), 1747-1750. https://doi.org/10.1039/c1sm06765f
  31. Xia, Z., Zhang, Y. and Ellyin, F. (2003), "A unified periodical boundary conditions for representative volume elements of composites and applications", Int. J. Solid. Struct., 40(8), 1907-1921. https://doi.org/10.1016/S0020-7683(03)00024-6

Cited by

  1. Advances in Mechanics of Soft Materials: A Review of Large Deformation Behavior of Hydrogels vol.07, pp.05, 2015, https://doi.org/10.1142/S1758825115300011
  2. Pattern transformation of single-material and composite periodic cellular structures vol.132, 2017, https://doi.org/10.1016/j.matdes.2017.07.022
  3. Mechanics of inhomogeneous large deformation of photo-thermal sensitive hydrogels vol.51, pp.25-26, 2014, https://doi.org/10.1016/j.ijsolstr.2014.09.014
  4. Pattern Switching in Soft Cellular Structures and Hydrogel-Elastomer Composite Materials under Compression vol.9, pp.6, 2017, https://doi.org/10.3390/polym9060229
  5. Prediction of the thermomechanical behavior of particle reinforced shape memory polymers 2017, https://doi.org/10.1002/pc.24658
  6. Pattern transformation of thermo-responsive shape memory polymer periodic cellular structures vol.71, 2015, https://doi.org/10.1016/j.ijsolstr.2015.06.022
  7. The Friction Effect on Buckling Behavior of Cellular Structures Under Axial Load vol.10, pp.02, 2018, https://doi.org/10.1142/S1758825118500138
  8. Recent Advances of the Constitutive Models of Smart Materials - Hydrogels and Shape Memory Polymers vol.12, pp.2, 2014, https://doi.org/10.1142/s1758825120500143
  9. Wrinkling of a homogeneous thin solid film deposited on a functionally graded substrate vol.74, pp.2, 2020, https://doi.org/10.12989/sem.2020.74.2.215