참고문헌
- G. Chen and S. Ma, Infinitely many solutions for resonant cooperative elliptic systems with sublinear or superlinear terms, Calc. Var. Partial Differential Equations 49 (2014), no. 1-2, 271-286. https://doi.org/10.1007/s00526-012-0581-5
- G. Chen and S. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math. 56 (2013), no. 6, 1181-1194. https://doi.org/10.1007/s11425-013-4567-3
- D. G. Costa and C. A. Magalhaes, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations 111 (1994), no. 1, 103-122. https://doi.org/10.1006/jdeq.1994.1077
- D. G. Costa and C. A. Magalhaes, A unified approach to a class of strongly indefinite functionals, J. Differential Equations 125 (1996), no. 2, 521-547. https://doi.org/10.1006/jdeq.1996.0039
- G. Fei, Multiple solutions of some nonlinear strongly resonant elliptic equations without the (PS) condition, J. Math. Anal. Appl. 193 (1995), no. 2, 659-670. https://doi.org/10.1006/jmaa.1995.1259
- M. Lazzo, Nonlinear differential problems and Morse thoery, Nonlinear Anal. 30 (1997), no. 1, 169-176. https://doi.org/10.1016/S0362-546X(96)00220-9
- S. Li and J. Q. Liu, Computations of critical groups at degenerate critical point and applications to nonlinear differential equations with resonance, Houston J. Math. 25 (1999), no. 3, 563-582.
- S. Li and W. Zou, The Computations of the critical groups with an application to elliptic resonant problems at a higher eigenvalue, J. Math. Anal. Appl. 235 (1999), no. 1, 237-259. https://doi.org/10.1006/jmaa.1999.6396
- S. Ma, Infinitely many solutions for cooperative elliptic systems with odd nonlinearity, Nonlinear Anal. 71 (2009), no. 5-6, 1445-1461. https://doi.org/10.1016/j.na.2008.12.012
- S. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Anal. 73 (2010), no. 12, 3856-3872. https://doi.org/10.1016/j.na.2010.08.013
- A. Pomponio, Asymptotically linear cooperative elliptic system: existence and multiplicity, Nonlinear Anal. 52 (2003), no. 3, 989-1003. https://doi.org/10.1016/S0362-546X(02)00148-7
- P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
- M. Ramos and H. Tavares, Solutions with multiple spike patterns for an elliptic system, Calc. Var. Partial Differential Equations 31 (2008), no. 1, 1-25.
- M. Ramos and J. F. Yang, Spike-layered solutions for an elliptic system with Neumann boundary conditions, Trans. Amer. Math. Soc. 357 (2005), no. 8, 3265-3284. https://doi.org/10.1090/S0002-9947-04-03659-1
- M. Schechter and W. Zou, Weak linking theorems and Schrodinger equations with critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 9 (2003), 601-619. https://doi.org/10.1051/cocv:2003029
- A. Szulkin and T.Weth, Ground state solutions for some indefinite variational problems, J. Functional Analysis 257 (2009), no. 12, 3802-3822. https://doi.org/10.1016/j.jfa.2009.09.013
- C.-L. Tang and Q.-J. Gao, Elliptic resonant problems at higher eigenvalues with an unbounded nonlinear term, J. Differential Equations 146 (1998), no. 1, 56-66. https://doi.org/10.1006/jdeq.1998.3411
- M. Willem, Minimax Theorems, Birkhauser, Boston, 1996.
- W. Zou, Solutions for resonant elliptic systems with nonodd or odd nonlinearities, J. Math. Anal. Appl. 223 (1998), no. 2, 397-417. https://doi.org/10.1006/jmaa.1998.5938
- W. Zou, Multiple solutions for asymptotically linear elliptic systems, J. Math. Anal. Appl. 255 (2001), no. 1, 213-229. https://doi.org/10.1006/jmaa.2000.7236
- W. Zou and S. Li, Nontrivial Solutions for resonant cooperative elliptic systems via computations of critical groups, Nonlinear Anal. 38 (1999), no. 2, Ser. A: Theory Methods, 229-247. https://doi.org/10.1016/S0362-546X(98)00191-6
- W. Zou and S. Li, Infinitely many solutions for Hamiltonian systems, J. Differential Equations 186 (2002), no. 1, 141-164. https://doi.org/10.1016/S0022-0396(02)00005-0
피인용 문헌
- Multiple solutions of superlinear cooperative elliptic systems at resonant vol.34, 2017, https://doi.org/10.1016/j.nonrwa.2016.09.012
- Infinitely Many Nontrivial Solutions of Resonant Cooperative Elliptic Systems with Superlinear Terms vol.2014, 2014, https://doi.org/10.1155/2014/349304