DOI QR코드

DOI QR Code

Chloride diffusivity of concrete: probabilistic characteristics at meso-scale

  • Pan, Zichao (Department of Bridge Engineering, Tongji University) ;
  • Ruan, Xin (Department of Bridge Engineering, Tongji University) ;
  • Chen, Airong (Department of Bridge Engineering, Tongji University)
  • Received : 2013.06.05
  • Accepted : 2013.10.06
  • Published : 2014.02.25

Abstract

This paper mainly discusses the influence of the aggregate properties including grading, shape, content and distribution on the chloride diffusion coefficient, as well as the initiation time of steel corrosion from a probabilistic point of view. Towards this goal, a simulation method of random aggregate structure (RAS) based on elliptical particles and a procedure of finite element analysis (FEA) at meso-scale are firstly developed to perform the analysis. Next, the chloride diffusion coefficient ratio between concrete and cement paste $D_{app}/D_{cp}$ is chosen as the index to represent the effect of aggregates on the chloride diffusion process. Identification of the random distribution of this index demonstrates that it can be viewed as actually having a normal distribution. After that, the effect of aggregates on $D_{app}/D_{cp}$ is comprehensively studied, showing that the appropriate properties of aggregates should be decided by both of the average and the deviation of $D_{app}/D_{cp}$. Finally, a case study is conducted to demonstrate the application of this mesoscopic method in predicting the initiation time of steel corrosion in reinforced concrete (RC) structures. The mesoscopic probabilistic method developed in this paper can not only provide more reliable evidences on the proper grading and shape of aggregates, but also play an important role in the probability-based design method.

Keywords

References

  1. Ababneh, A., Benboudjema, F. and Xi, Y. (2003), "Chloride penetration in nonsaturated concrete", J. Mater. Civil Eng., 15(2), 183-191. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(183)
  2. Almusallam, A.A., Al-Gahtani, A.S., Aziz, A.R., Rasheeduzzafar (1996), "Effect of reinforcement corrosion on bond strength", Constr. Build.Mater., 10(2), 123-129. https://doi.org/10.1016/0950-0618(95)00077-1
  3. Bazant, Z.P. and Planas, J. (1997), Fracture and Size Effect in Concrete and Other Quasi-brittle Materials, CRC PressILlc.
  4. Bazant, Z.P., Tabbara, M., Kazemi, M., and Pijaudier‐Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
  5. Bentz, D.P. (2007), "A virtual rapid chloride permeability test", Cement Concrete Compos., 29(10), 723-731. https://doi.org/10.1016/j.cemconcomp.2007.06.006
  6. Billingsley, P. (2012), "Probability and measure", John Wiley & Sons.
  7. Caballero, A., Lopez, C. and Carol, I. (2006), "3D meso-structural analysis of concrete specimens under uniaxial tension", Comput. Meth. Appl. Mech. Eng., 195(52), 7182-7195. https://doi.org/10.1016/j.cma.2005.05.052
  8. Cabrera, J. (1996), "Deterioration of concrete due to reinforcement steel corrosion", Cement Concrete Compos., 18(1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7
  9. Cairns, J., Plizzari, G.A., Du, Y., Law, D.Y. and Franzoni, C. (2005), "Mechanical properties of corrosion-damaged reinforcement", ACI Mater. J., 102(4), 256-264.
  10. Care, S. and Herve, E. (2004), "Application of a n-phase model to the diffusion coefficient of chloride in mortar", Transport in porous media, 56(2), 119-135. https://doi.org/10.1023/B:TIPM.0000021730.34756.40
  11. Care, S. (2003), "Influence of aggregates on chloride diffusion coefficient into mortar", Cement Concr. Research, 33(7), 1021-1028. https://doi.org/10.1016/S0008-8846(03)00009-7
  12. CECS220 (2007), Standard for durability assessment of concrete structures (CECS220:2007), China Construction Press.
  13. Chen, D. and Mahadevan, S. (2008), "Chloride-induced reinforcement corrosion and concrete cracking simulation", Cement Concrete Compos., 30(3), 227-238. https://doi.org/10.1016/j.cemconcomp.2006.10.007
  14. Du, Y., Clark, L. and Chan, A. (2005), "Residual capacity of corroded reinforcing bars", Mag. Concrete Res., 57(3), 135-148. https://doi.org/10.1680/macr.2005.57.3.135
  15. Duan, H.et al. (2006), "Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions", Phys. Review B, 73(17), 174203. https://doi.org/10.1103/PhysRevB.73.174203
  16. Garboczi, E. and Bentz, D. (1992), "Computer simulation of the diffusivity of cement-based materials", J. Mater. Sci., 27(8), 2083-2092. https://doi.org/10.1007/BF01117921
  17. Granqvist, C. and Hunderi, O. (1978), "Conductivity of inhomogeneous materials: effective-medium theory with dipole-dipole interaction", Phys. Review B, 18(4), 1554. https://doi.org/10.1103/PhysRevB.18.1554
  18. Hafner, S., Eckardt, S. and Konke, C. (2003), "A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales. In: Proceedings of the 16th IKM.
  19. Hafner, S., Eckardt, S., Luther, T., Konke, C. (2006), "Mesoscale modeling of concrete: geometry and numeric", Comput. Struct., 84(7), 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
  20. Halamickova, P. Detwiler, R.J., Bentz, D.P. and Garboczi, E.J. (1995), "Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter", Cement Concrete Res., 25(4), 790-802. https://doi.org/10.1016/0008-8846(95)00069-O
  21. Han, S.H. (2007), "Influence of diffusion coefficient on chloride ion penetration of concrete structure", Constr.Build. Mater., 21(2), 370-378. https://doi.org/10.1016/j.conbuildmat.2005.08.011
  22. Hobbs, D. (1999), "Aggregate influence on chloride ion diffusion into concrete", Cement Concrete Res., 29(12), 1995-1998. https://doi.org/10.1016/S0008-8846(99)00188-X
  23. Jarque, C. and Bera, A. (1987),"A test for normality of observations and regression residuals", International Statistical Review/Revue Internationale de Statistique, 163-172.
  24. Kim, S.M. and Abu Al-Rub, R.K. (2011),"Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002
  25. Leite, J., Slowik, V. and Mihashi, H. (2004),"Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
  26. Li, L.Y., Xia, J. and Lin, S.S. (2012),"A multi-phase model for predicting the effective diffusion coefficient of chlorides in concrete", Constr. Build. Mater., 26(1), 295-301. https://doi.org/10.1016/j.conbuildmat.2011.06.024
  27. Lilliefors, H. (1967), "On the Kolmogorov-Smirnov test for normality with mean and variance unknown", J. the American Statistical Assoc.,62(318), 399-402. https://doi.org/10.1080/01621459.1967.10482916
  28. Mohammed, T. and Hamada, H. (2003),"Relationship between free chloride and total chloride contents in concrete",Cement Concr. Res.33(9), 1487-1490. https://doi.org/10.1016/S0008-8846(03)00065-6
  29. Oh, B.H. and Jang, S.Y. (2004),"Prediction of diffusivity of concrete based on simple analytic equations", Cement Concrete Res., 34(3), 463-480. https://doi.org/10.1016/j.cemconres.2003.08.026
  30. Ollivier, J., Maso, J. and Bourdette, B. (1995),"Interfacial transition zone in concrete", Advanced Cement Based Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
  31. Ruan, X. and Pan, Z.C. (2012), "Mesoscopic simulation method of concrete carbonation process", Struct. Infrastruct. Eng., 8(2), 99-110. https://doi.org/10.1080/15732479.2011.605370
  32. Saetta, A.V. (2005), "Deterioration of reinforced concrete structures due to chemical-physical phenomena: model-based simulation", J. Mater. Civil Eng., 17(3), 313-319. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(313)
  33. Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26(1), 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
  34. Shafei, B., Alipour, A. and Shinozuka, M. (2011), "Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite-element framework", Cement Concrete Res., 42(2), 365-376.
  35. Van Mien, T., Stitmannaithum, B. and Nawa, T. (2011), "Prediction of chloride diffusion coefficient of concrete under flexural cyclic load", Comput. Concr., 8(3), 343-355. https://doi.org/10.12989/cac.2011.8.3.343
  36. Van Mier, J. and Van Vliet, M. (2003), "Influence of microstructure of concrete on size/scale effects in tensile fracture", Eng. Fracture Mech., 70(16), 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9
  37. Wang, L. and Ueda, T. (2011), "Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence", Computers Concr., 8(3), 125-142. https://doi.org/10.12989/cac.2011.8.2.125
  38. Wang, L., Wang, X., Mohammad, L. and Abadie, C. (2005), "Unified method to quantify aggregate shape angularity and texture using fourier analysis", J. Mater. In civil Eng., 17(5), 498-504. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(498)
  39. Wang, W., Wang, J. and Kim, M. (2001), "An algebraic condition for the separation of two ellipsoids", Computer aided geometric design, 18(6), 531-539. https://doi.org/10.1016/S0167-8396(01)00049-8
  40. Wang, X.Y., Park, K.B. and Lee, H.S. (2012), "Modeling of chloride diffusion in a hydrating concrete incorporating silica fume", Comput. Concr., 10(5), 523-539. https://doi.org/10.12989/cac.2012.10.5.523
  41. Wang, Z., Kwan, A. and Chan, H. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
  42. Xi, Y. and Bazant, Z.P. (1999), "Modeling chloride penetration in saturated concrete", J. Mater. Civil Eng., 11(1), 58-65. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
  43. Xu, Z., Hao, H. and Li, H. (2012), "Mesoscale modelling of fiber reinforced concrete material under compressive impact loading", Constr. Build. Mater., 26(1), 274-288. https://doi.org/10.1016/j.conbuildmat.2011.06.022
  44. Yang, C. (2005), "Effect of the percolated interfacial transition zone on the chloride migration coefficient of cement-based materials", Mater. Chem. Phys., 91(2), 538-544. https://doi.org/10.1016/j.matchemphys.2004.12.022
  45. Yang, C. and Su, J. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3
  46. Yuan, Q., Shi, C., Schutterc, G.D., Audenaertc, K. and Denga, D. (2009), "Chloride binding of cement-based materials subjected to external chloride environment-a review", Construct. Build. Mater., 23(1), 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004
  47. Zeng, Y. (2007), "Modeling of chloride diffusion in hetero-structured concretes by finite element method", Cement Concrete Compos., 29(7), 559-565. https://doi.org/10.1016/j.cemconcomp.2007.04.003
  48. Zhang, S.P. and Zhao, B.H. (2012), "Research on chloride ion diffusivity of concrete subjected to $CO_{2}$ environment", Comput. Concr., 10(3), 219-229. https://doi.org/10.12989/cac.2012.10.3.219
  49. Zhang, S.P., Dong, X and Jiang, J.Y. (2013), "Effect of measurement method and cracking on chloride transport in concrete", Comput. Concr., 11(4), 305-316. https://doi.org/10.12989/cac.2013.11.4.305
  50. Zheng, J.J., Zhou, X.Z., Wu, Y.F. and Jin, X.Y. (2012), "A numerical method for the chloride diffusivity in concrete with aggregate shape effect", Constr. Build. Mater., 31, 151-156. https://doi.org/10.1016/j.conbuildmat.2011.12.061
  51. Zheng, J. and Zhou, X. (2008), "Three-phase composite sphere model for the prediction of chloride diffusivity of concrete", J. Mater. Civil Eng., 20(3), 205-211. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(205)
  52. Zheng, J., Li, C. and Zhao, L. (2003), "Simulation of two-dimensional aggregate distribution with wall effect", J. Mater. Civil Eng., 15(5), 506-510. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(506)

Cited by

  1. Mesoscopic simulation of steel rebar corrosion process in concrete and its damage to concrete cover vol.13, pp.4, 2017, https://doi.org/10.1080/15732479.2016.1164730
  2. Chloride diffusion study in different types of concrete using finite element method (FEM) vol.2, pp.1, 2014, https://doi.org/10.12989/acc2014.2.1.039
  3. A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.231
  4. Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis vol.31, pp.1, 2017, https://doi.org/10.1007/s13344-017-0008-3
  5. Spatial variability of chloride and its influence on thickness of concrete cover: A two-dimensional mesoscopic numerical research vol.95, 2015, https://doi.org/10.1016/j.engstruct.2015.03.061
  6. Mesoscopic Finite Element Modeling of Concrete Considering Geometric Boundaries of Actual Aggregates vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/7816502
  7. The effect of microscopic cracks on chloride diffusivity of recycled aggregate concrete vol.170, pp.None, 2014, https://doi.org/10.1016/j.conbuildmat.2018.03.045
  8. A study on image-processing based identification of aspect ratio of coarse aggregate vol.275, pp.None, 2014, https://doi.org/10.1051/matecconf/201927502007
  9. Numerical simulation of chloride diffusion in cementitious materials by lattice type model vol.275, pp.None, 2014, https://doi.org/10.1051/matecconf/201927502008
  10. Standardization of life-cycle performance evaluation and application to suspension bridge with multiple pylons vol.16, pp.4, 2014, https://doi.org/10.1080/15732479.2019.1662065
  11. Simulation method of concrete chloride ingress with mesoscopic cellular automata vol.249, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118778