참고문헌
- Ababneh, A., Benboudjema, F. and Xi, Y. (2003), "Chloride penetration in nonsaturated concrete", J. Mater. Civil Eng., 15(2), 183-191. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(183)
- Almusallam, A.A., Al-Gahtani, A.S., Aziz, A.R., Rasheeduzzafar (1996), "Effect of reinforcement corrosion on bond strength", Constr. Build.Mater., 10(2), 123-129. https://doi.org/10.1016/0950-0618(95)00077-1
- Bazant, Z.P. and Planas, J. (1997), Fracture and Size Effect in Concrete and Other Quasi-brittle Materials, CRC PressILlc.
- Bazant, Z.P., Tabbara, M., Kazemi, M., and Pijaudier‐Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686)
- Bentz, D.P. (2007), "A virtual rapid chloride permeability test", Cement Concrete Compos., 29(10), 723-731. https://doi.org/10.1016/j.cemconcomp.2007.06.006
- Billingsley, P. (2012), "Probability and measure", John Wiley & Sons.
- Caballero, A., Lopez, C. and Carol, I. (2006), "3D meso-structural analysis of concrete specimens under uniaxial tension", Comput. Meth. Appl. Mech. Eng., 195(52), 7182-7195. https://doi.org/10.1016/j.cma.2005.05.052
- Cabrera, J. (1996), "Deterioration of concrete due to reinforcement steel corrosion", Cement Concrete Compos., 18(1), 47-59. https://doi.org/10.1016/0958-9465(95)00043-7
- Cairns, J., Plizzari, G.A., Du, Y., Law, D.Y. and Franzoni, C. (2005), "Mechanical properties of corrosion-damaged reinforcement", ACI Mater. J., 102(4), 256-264.
- Care, S. and Herve, E. (2004), "Application of a n-phase model to the diffusion coefficient of chloride in mortar", Transport in porous media, 56(2), 119-135. https://doi.org/10.1023/B:TIPM.0000021730.34756.40
- Care, S. (2003), "Influence of aggregates on chloride diffusion coefficient into mortar", Cement Concr. Research, 33(7), 1021-1028. https://doi.org/10.1016/S0008-8846(03)00009-7
- CECS220 (2007), Standard for durability assessment of concrete structures (CECS220:2007), China Construction Press.
- Chen, D. and Mahadevan, S. (2008), "Chloride-induced reinforcement corrosion and concrete cracking simulation", Cement Concrete Compos., 30(3), 227-238. https://doi.org/10.1016/j.cemconcomp.2006.10.007
- Du, Y., Clark, L. and Chan, A. (2005), "Residual capacity of corroded reinforcing bars", Mag. Concrete Res., 57(3), 135-148. https://doi.org/10.1680/macr.2005.57.3.135
- Duan, H.et al. (2006), "Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions", Phys. Review B, 73(17), 174203. https://doi.org/10.1103/PhysRevB.73.174203
- Garboczi, E. and Bentz, D. (1992), "Computer simulation of the diffusivity of cement-based materials", J. Mater. Sci., 27(8), 2083-2092. https://doi.org/10.1007/BF01117921
- Granqvist, C. and Hunderi, O. (1978), "Conductivity of inhomogeneous materials: effective-medium theory with dipole-dipole interaction", Phys. Review B, 18(4), 1554. https://doi.org/10.1103/PhysRevB.18.1554
- Hafner, S., Eckardt, S. and Konke, C. (2003), "A geometrical inclusion-matrix model for the finite element analysis of concrete at multiple scales. In: Proceedings of the 16th IKM.
- Hafner, S., Eckardt, S., Luther, T., Konke, C. (2006), "Mesoscale modeling of concrete: geometry and numeric", Comput. Struct., 84(7), 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
- Halamickova, P. Detwiler, R.J., Bentz, D.P. and Garboczi, E.J. (1995), "Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter", Cement Concrete Res., 25(4), 790-802. https://doi.org/10.1016/0008-8846(95)00069-O
- Han, S.H. (2007), "Influence of diffusion coefficient on chloride ion penetration of concrete structure", Constr.Build. Mater., 21(2), 370-378. https://doi.org/10.1016/j.conbuildmat.2005.08.011
- Hobbs, D. (1999), "Aggregate influence on chloride ion diffusion into concrete", Cement Concrete Res., 29(12), 1995-1998. https://doi.org/10.1016/S0008-8846(99)00188-X
- Jarque, C. and Bera, A. (1987),"A test for normality of observations and regression residuals", International Statistical Review/Revue Internationale de Statistique, 163-172.
- Kim, S.M. and Abu Al-Rub, R.K. (2011),"Meso-scale computational modeling of the plastic-damage response of cementitious composites", Cement Concrete Res., 41(3), 339-358. https://doi.org/10.1016/j.cemconres.2010.12.002
- Leite, J., Slowik, V. and Mihashi, H. (2004),"Computer simulation of fracture processes of concrete using mesolevel models of lattice structures", Cement Concrete Res., 34(6), 1025-1033. https://doi.org/10.1016/j.cemconres.2003.11.011
- Li, L.Y., Xia, J. and Lin, S.S. (2012),"A multi-phase model for predicting the effective diffusion coefficient of chlorides in concrete", Constr. Build. Mater., 26(1), 295-301. https://doi.org/10.1016/j.conbuildmat.2011.06.024
- Lilliefors, H. (1967), "On the Kolmogorov-Smirnov test for normality with mean and variance unknown", J. the American Statistical Assoc.,62(318), 399-402. https://doi.org/10.1080/01621459.1967.10482916
- Mohammed, T. and Hamada, H. (2003),"Relationship between free chloride and total chloride contents in concrete",Cement Concr. Res.33(9), 1487-1490. https://doi.org/10.1016/S0008-8846(03)00065-6
- Oh, B.H. and Jang, S.Y. (2004),"Prediction of diffusivity of concrete based on simple analytic equations", Cement Concrete Res., 34(3), 463-480. https://doi.org/10.1016/j.cemconres.2003.08.026
- Ollivier, J., Maso, J. and Bourdette, B. (1995),"Interfacial transition zone in concrete", Advanced Cement Based Mater., 2(1), 30-38. https://doi.org/10.1016/1065-7355(95)90037-3
- Ruan, X. and Pan, Z.C. (2012), "Mesoscopic simulation method of concrete carbonation process", Struct. Infrastruct. Eng., 8(2), 99-110. https://doi.org/10.1080/15732479.2011.605370
- Saetta, A.V. (2005), "Deterioration of reinforced concrete structures due to chemical-physical phenomena: model-based simulation", J. Mater. Civil Eng., 17(3), 313-319. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(313)
- Scrivener, K.L. and Nemati, K.M. (1996), "The percolation of pore space in the cement paste/aggregate interfacial zone of concrete", Cement Concrete Res., 26(1), 35-40. https://doi.org/10.1016/0008-8846(95)00185-9
- Shafei, B., Alipour, A. and Shinozuka, M. (2011), "Prediction of corrosion initiation in reinforced concrete members subjected to environmental stressors: A finite-element framework", Cement Concrete Res., 42(2), 365-376.
- Van Mien, T., Stitmannaithum, B. and Nawa, T. (2011), "Prediction of chloride diffusion coefficient of concrete under flexural cyclic load", Comput. Concr., 8(3), 343-355. https://doi.org/10.12989/cac.2011.8.3.343
- Van Mier, J. and Van Vliet, M. (2003), "Influence of microstructure of concrete on size/scale effects in tensile fracture", Eng. Fracture Mech., 70(16), 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9
- Wang, L. and Ueda, T. (2011), "Mesoscale simulation of chloride diffusion in concrete considering the binding capacity and concentration dependence", Computers Concr., 8(3), 125-142. https://doi.org/10.12989/cac.2011.8.2.125
- Wang, L., Wang, X., Mohammad, L. and Abadie, C. (2005), "Unified method to quantify aggregate shape angularity and texture using fourier analysis", J. Mater. In civil Eng., 17(5), 498-504. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:5(498)
- Wang, W., Wang, J. and Kim, M. (2001), "An algebraic condition for the separation of two ellipsoids", Computer aided geometric design, 18(6), 531-539. https://doi.org/10.1016/S0167-8396(01)00049-8
- Wang, X.Y., Park, K.B. and Lee, H.S. (2012), "Modeling of chloride diffusion in a hydrating concrete incorporating silica fume", Comput. Concr., 10(5), 523-539. https://doi.org/10.12989/cac.2012.10.5.523
- Wang, Z., Kwan, A. and Chan, H. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Xi, Y. and Bazant, Z.P. (1999), "Modeling chloride penetration in saturated concrete", J. Mater. Civil Eng., 11(1), 58-65. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
- Xu, Z., Hao, H. and Li, H. (2012), "Mesoscale modelling of fiber reinforced concrete material under compressive impact loading", Constr. Build. Mater., 26(1), 274-288. https://doi.org/10.1016/j.conbuildmat.2011.06.022
- Yang, C. (2005), "Effect of the percolated interfacial transition zone on the chloride migration coefficient of cement-based materials", Mater. Chem. Phys., 91(2), 538-544. https://doi.org/10.1016/j.matchemphys.2004.12.022
- Yang, C. and Su, J. (2002), "Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar", Cement Concrete Res., 32(10), 1559-1565. https://doi.org/10.1016/S0008-8846(02)00832-3
- Yuan, Q., Shi, C., Schutterc, G.D., Audenaertc, K. and Denga, D. (2009), "Chloride binding of cement-based materials subjected to external chloride environment-a review", Construct. Build. Mater., 23(1), 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004
- Zeng, Y. (2007), "Modeling of chloride diffusion in hetero-structured concretes by finite element method", Cement Concrete Compos., 29(7), 559-565. https://doi.org/10.1016/j.cemconcomp.2007.04.003
-
Zhang, S.P. and Zhao, B.H. (2012), "Research on chloride ion diffusivity of concrete subjected to
$CO_{2}$ environment", Comput. Concr., 10(3), 219-229. https://doi.org/10.12989/cac.2012.10.3.219 - Zhang, S.P., Dong, X and Jiang, J.Y. (2013), "Effect of measurement method and cracking on chloride transport in concrete", Comput. Concr., 11(4), 305-316. https://doi.org/10.12989/cac.2013.11.4.305
- Zheng, J.J., Zhou, X.Z., Wu, Y.F. and Jin, X.Y. (2012), "A numerical method for the chloride diffusivity in concrete with aggregate shape effect", Constr. Build. Mater., 31, 151-156. https://doi.org/10.1016/j.conbuildmat.2011.12.061
- Zheng, J. and Zhou, X. (2008), "Three-phase composite sphere model for the prediction of chloride diffusivity of concrete", J. Mater. Civil Eng., 20(3), 205-211. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(205)
- Zheng, J., Li, C. and Zhao, L. (2003), "Simulation of two-dimensional aggregate distribution with wall effect", J. Mater. Civil Eng., 15(5), 506-510. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:5(506)
피인용 문헌
- Mesoscopic simulation of steel rebar corrosion process in concrete and its damage to concrete cover vol.13, pp.4, 2017, https://doi.org/10.1080/15732479.2016.1164730
- Chloride diffusion study in different types of concrete using finite element method (FEM) vol.2, pp.1, 2014, https://doi.org/10.12989/acc2014.2.1.039
- A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale vol.15, pp.2, 2015, https://doi.org/10.12989/cac.2015.15.2.231
- Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis vol.31, pp.1, 2017, https://doi.org/10.1007/s13344-017-0008-3
- Spatial variability of chloride and its influence on thickness of concrete cover: A two-dimensional mesoscopic numerical research vol.95, 2015, https://doi.org/10.1016/j.engstruct.2015.03.061
- Mesoscopic Finite Element Modeling of Concrete Considering Geometric Boundaries of Actual Aggregates vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/7816502
- The effect of microscopic cracks on chloride diffusivity of recycled aggregate concrete vol.170, pp.None, 2014, https://doi.org/10.1016/j.conbuildmat.2018.03.045
- A study on image-processing based identification of aspect ratio of coarse aggregate vol.275, pp.None, 2014, https://doi.org/10.1051/matecconf/201927502007
- Numerical simulation of chloride diffusion in cementitious materials by lattice type model vol.275, pp.None, 2014, https://doi.org/10.1051/matecconf/201927502008
- Standardization of life-cycle performance evaluation and application to suspension bridge with multiple pylons vol.16, pp.4, 2014, https://doi.org/10.1080/15732479.2019.1662065
- Simulation method of concrete chloride ingress with mesoscopic cellular automata vol.249, pp.None, 2020, https://doi.org/10.1016/j.conbuildmat.2020.118778