DOI QR코드

DOI QR Code

Temperature effect on multi-ionic species diffusion in saturated concrete

  • Damrongwiriyanupap, Nattapong (Civil Engineering Program, School of Engineering, University of Phayao) ;
  • Li, Linyuan (Department of Mathematics and Statistics, University of New Hampshire) ;
  • Limkatanyu, Suchart (Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University) ;
  • Xi, Yunping (Department of Civil, Environmental, and Architectural Engineering, University of Colorado at Boulder)
  • Received : 2012.11.14
  • Accepted : 2013.09.16
  • Published : 2014.02.25

Abstract

This study presents the mathematical model for predicting chloride penetration into saturated concrete under non-isothermal condition. The model considers not only diffusion mechanism but also migration process of chloride ions and other chemical species in concrete pore solution such as sodium, potassium, and hydroxyl ions. The coupled multi-ionic transport in concrete is described by the Nernst-Planck equation associated with electro-neutrality condition. The coupling parameter taken into account the effect of temperature on ion diffusion obtained from available test data is proposed and explicitly incorporated in the governing equations. The coupled transport equations are solved using the finite element method. The numerical results are validated with available experimental data and the comparison shows a good agreement.

Keywords

References

  1. Ababneh, A. and Xi, Y. (2002), "An experimental study on the effect of chloride penetration on moisture diffusion in concrete", Mater. Struct., 35, 659-664. https://doi.org/10.1007/BF02480359
  2. Ababneh, A., Benboudjema, F. and Xi, Y. (2003), "Chloride penetration in nonsaturated concrete", J. Mater. Civ. Eng., ASCE, 15(2), 183-191. https://doi.org/10.1061/(ASCE)0899-1561(2003)15:2(183)
  3. Abarr, L. (2005), "The effect of moisture diffusion on chloride penetration", M.S. Thesis, the University of Colorado at Boulder.
  4. Berke, N.S. and Hicks, M.C. (1994), "Predicting chloride profiles in concrete", Corros., March, 234-239.
  5. Christensen, R.M. (1979), "Mechanics of composite materials", Wiley Interscience, New York.
  6. Collepardi, M., Marciall, A. and Turriziani, R. (1972), "Penetration of chloride ions in cement pastes and concrete", J. American Ceram. Soc., 55(10), 534-535. https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
  7. Damrongwiriyanupap, N., Li L.Y. and Xi, Y. (2011), "Coupled diffusion of chloride and other ions in saturated concrete", Front. Archit. Civ. Eng. China, 5(3), 267-277. https://doi.org/10.1007/s11709-011-0112-z
  8. Frey, R., Balogh, T. and Balazs, G.L. (1994), "Kinetic method to analyze chloride diffusion in various concretes", Cement. Concrete Res., 24(5), 863-873. https://doi.org/10.1016/0008-8846(94)90006-X
  9. Isgor, B. and Razacpur, G. (2004), "Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures", Cement. Concrete Res., 1, 57-73.
  10. Isteita M. (2009), "The effect of thermal conduction on chloride penetration in concrete", M.S. Thesis, the University of Colorado at Boulder.
  11. Li, L.Y. and Page, C.L. (1998), "Modeling of electrochemical chloride extraction from concrete: influence of ionic activity coefficients", Comput. Mater. Sci., 9, 303-308. https://doi.org/10.1016/S0927-0256(97)00152-3
  12. Li, L.Y. and Page, C.L. (2000), "Finite element modeling of chloride removal from concrete by an electrochemical method", Corros. Sci., 42, 2145-2165. https://doi.org/10.1016/S0010-938X(00)00044-5
  13. Marchand, J. (2001), "Modeling the behavior of unsaturated cement systems exposed to aggressive chemical environments", Mater. Struct., 34, 195-200. https://doi.org/10.1007/BF02480588
  14. Martin-Perez, B., Zibara, H., Hooton, R.D. and Thomas, M.D.A. (2000), "A study of the effect of chloride binding on service life predictions", Cement. Concrete Res., 30, 1215-1223. https://doi.org/10.1016/S0008-8846(00)00339-2
  15. Martys, N.S., Torquato, S. and Bentz, D.P. (1994), "Universal scaling of fluid permeability for sphere packings", Phys. Rev., E, 50(1), 403-408.
  16. Nguyen, T.Q., Baroghel-Bouny, V. and Dangla, P. (2006), "Prediction of chloride ingress into saturated concrete on the basis of multi-species model by numerical calculations", Comput. Concr., 3(6), 401-422. https://doi.org/10.12989/cac.2006.3.6.401
  17. Page, C.L., Short, N.R. and El Tarras, A. (1981), "Diffusion of chloride ions in hardened cement paste", Cement. Concrete Res., 11(3), 395-406. https://doi.org/10.1016/0008-8846(81)90111-3
  18. Saetta, A.V., Scotta, R.V. and Vitaliani, R.V. (1993), "Analysis of chloride diffusion into partially saturated concrete", ACI Mater. J., 90(5), 441-451.
  19. Samson, E. and Marchand, J. (1999), "Numerical solution of the extended nernst-planck model", J. Colloid. Interface. Sci., 215, 1-8. https://doi.org/10.1006/jcis.1999.6145
  20. Samson, E. and Marchand, J. (2007), "Modeling the transport of ions in unsaturated cement-based materials", Comput. Struct., 85, 1740-1756. https://doi.org/10.1016/j.compstruc.2007.04.008
  21. Samson, E., Marchand, J., Robert, J.L. and Bournazel, J.P. (1999), "Modelling ion diffusion mechanisms in porous media", Int. J. Numer. Meth. Eng., 46, 2043-2060. https://doi.org/10.1002/(SICI)1097-0207(19991230)46:12<2043::AID-NME795>3.0.CO;2-7
  22. Sergi, G., Yu, S.W. and Page, C.L. (1992), "Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment", Mag. Concr. Res., 44, 63-72. https://doi.org/10.1680/macr.1992.44.158.63
  23. Suwito, A. and Xi, Y. (2004), "Service life of reinforced concrete structures with corrosion damage due to chloride attack", In: Frangopol, D.M., Bruhwiler, E., Faber, M.H. and Adey, B. (eds), Life-Cycle Performance of Deteriorating Structures: Assessment, Design and Management, Special Publication of ASCE, 207-218.
  24. Suwito, Cai X.C. and Xi Y. (2006), "Parallel finite element method for coupled chloride penetration and moisture diffusion in concrete", Int. J. Num. Anal. Mod., 3(4), 481-503.
  25. Tang, L. and Nilsson, L.O. (1993), "Chloride binding capacity and binding isotherms of OPC pastes and mortars", Cement Concrete Res., 23, 247-253. https://doi.org/10.1016/0008-8846(93)90089-R
  26. Wang, Y., Li, L.Y. and Page, C.L. (2005), "Modeling of chloride ingress into concrete from a saline environment", Build. Environ., 40, 1573-1582. https://doi.org/10.1016/j.buildenv.2005.02.001
  27. Wee, T.H., Wong, S.F., Swadiwudhipong, S. and Lee, S.L. (1997), "A prediction method for long-term chloride concentration profiles in hardened cement matrix materials", ACI Mater. J., 94(6), 565-576.
  28. Xi, Y. and Bazant, Z. (1999), "Modeling chloride penetration in saturated concrete", J. Mater. Civil Eng., ASCE, 11(1), 58-65. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:1(58)
  29. Xi, Y., Bazant, Z.P. and Jennings, H.M. (1994a), "Moisture diffusion in cementitious materials: adsorption isotherm", J. Adv. Cement-Based Mater., 1, 248-257.
  30. Xi, Y., Bazant, Z.P., and Jennings, H.M. (1994b), "Moisture diffusion in cementitious materials: moisture capacity and diffusivity", J. Adv. Cement-Based Mater., 1, 258-266.
  31. Yu, S.W. and Page, C.L. (1996), "Computer simulation of ionic migration during electrochemical chloride extraction from hardened concrete", Brit. Corros. J., 31, 73-75. https://doi.org/10.1179/bcj.1996.31.1.73
  32. Zuo, X.B., Sun, W., Yu, C. and Wan, X.R. (2010), "Modeling of ion diffusion coefficient in saturated concrete", Comput. Concr., 7(5), 421-434. https://doi.org/10.12989/cac.2010.7.5.421
  33. Zuo, X.B., Sun, W., Li, H. and Zhao, Y.K. (2012), "Modeling of diffusion-reaction behavior of sulfate ion in concrete under sulfate environments", Comput. Concr., 10(1), 79-93. https://doi.org/10.12989/cac.2012.10.1.079

Cited by

  1. Predictive models of hardened mechanical properties of waste LCD glass concrete vol.14, pp.5, 2014, https://doi.org/10.12989/cac.2014.14.5.577
  2. An investigation of water magnetization and its influence on some concrete specificities like fluidity and compressive strength vol.13, pp.5, 2014, https://doi.org/10.12989/cac.2014.13.5.649
  3. The effect of moisture transport on chloride penetration in concrete vol.125, 2016, https://doi.org/10.1016/j.conbuildmat.2016.08.124
  4. Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete vol.19, pp.1, 2014, https://doi.org/10.12989/cac.2017.19.1.069
  5. Strength degeneracy of LWAC and flexural behavior of LWAC members after fire vol.20, pp.2, 2014, https://doi.org/10.12989/cac.2017.20.2.177
  6. A chemo-damage-transport model for chloride ions diffusion in cement-based materials: Combined effects of sulfate attack and temperature vol.288, pp.None, 2021, https://doi.org/10.1016/j.conbuildmat.2021.123121