DOI QR코드

DOI QR Code

풋마름병균의 길항세균 Bacillus amyloliquefaciens SKU-78의 대량 배양 조건 확립

Fermentation of a Potential Biocontrol Agent, Bacillus amyloliquefaciens SKU-78 Strain

  • 김신덕 (서경대학교 화학생명공학과) ;
  • 조홍범 (서경대학교 화학생명공학과)
  • Kim, Shin-Duk (Department of Chemical and Biological Engineering, Seokyeong University) ;
  • Cho, Hong-Bum (Department of Chemical and Biological Engineering, Seokyeong University)
  • 투고 : 2013.09.09
  • 심사 : 2014.03.19
  • 발행 : 2014.03.31

초록

길항균을 생물 농약으로 개발하기 위해서는 저렴한 산업용 배지를 이용한 대량 생산 체계를 확립하는 것이 중요하다. 본 연구에서는 풋마름병 방제 효과가 뛰어난 Bacillus amyloliquefaciens SKU-78 균주의 배양조건을 확립하였다. 저가의 산업용 기질로는 콩가루와 옥수수 전분 배지가 균 생장에 가장 효과적이었고, 최초 pH 5.5, 배양 온도 $30^{\circ}C$, 교반속도 150-250 rpm의 조건으로 30 L fermenter를 이용한 배양에서 20 시간째에 최대 생균수($1.2{\times}10^{11}$ CFU/ml)에 도달하였다. 저가의 산업용 배지로 배양한 배양액을 관주 처리하였을 때 65%의 발병 억제 효과를 나타냄으로써 SKU-78 균주의 산업용 배지를 이용한 대량배양의 기초가 마련되었다.

Mass production of biocontrol agent is an essential step for its commercial use. Media composition and culture conditions for production of Bacillus amyloliquefaciens SKU-78, a potential biocontrol agent against bacterial wilts, were optimized by a flask culture. Low cost media combining nitrogen and carbon sources were tested. Maximum cell growth (> $2{\times}10^9$ CFU/ml) was obtained in a medium of 5% soy flour combined with 3% corn starch after 24 h cultivation. The optimum initial pH, temperature and shaking speed was 5.5, $30^{\circ}C$ and 150-250 rpm, respectively. Fermentation of SKU-78 was scaled up in 30 L fermenter and the profiles of cell density, pH, dissolved oxygen and spore formation were recorded. After 8 h lag phase, exponential growth occurred and reached at maximum viable cell number ($1.2{\times}10^{11}$ CFU/ml) after 20 h. The SKU-78 strain grown in a low cost medium exhibited the high suppression of bacterial wilts. The results indicate that SKU-78 strain can be produced in a low cost medium and provide a basis for scaling up to industrial level.

키워드

참고문헌

  1. Fujiwara, A., Fujisawa, M., Hamasaki, R., Kawasak,i T., Fujie, M., and Yamada, T. 2011. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microbiol. 77, 4155-4162. https://doi.org/10.1128/AEM.02847-10
  2. Lee, K.S. 1997. Evaluation on the effects of pesticide residues to agroecosystem in Korea. Kor. J. Environ. Agric. 16, 80-93.
  3. Spadaro, D. and Gullino, M. 2005. Improving the efficacy of biocontrol agents against soilborne pathogens. Crop Prot. 24, 601-613. https://doi.org/10.1016/j.cropro.2004.11.003
  4. Sung, P.J., Shin, J.K., Cho, H.B., and Kim, S.D. 2005. Isolation, identification and biological control activity of SKU-78 strain against Ralstonia solanacearum. J. Korean Soc. Appl. Biol. Chem. 48, 48-52.
  5. Tans-Kersten, J., Huang, H., and Allen, C. 2001. Ralstonia solanacearum needs motility for invasive virulence on tomato. J. Bacteriol. 183, 3589-3605. https://doi.org/10.1128/JB.183.12.3589-3596.2001
  6. Van Elsas, J.D., Kastelein, P., Bekkum, V., Van der Wolf, J., de Vries, P.M., and Van Overbeek, L. 2000. Survival of Ralstonia solanacearum biovar 2, the causative agent of potato brown rot in field and microcosm soils in temperate climates. Phytopathol. 90, 1358-1366. https://doi.org/10.1094/PHYTO.2000.90.12.1358
  7. Yanez-Mendizabal V., Vinas, I., Usall, J., Torres, R., Solsona, C., and Teixido, N. 2012. Production of the post harvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol. Control 60, 280-289. https://doi.org/10.1016/j.biocontrol.2011.12.001

피인용 문헌

  1. Bacillus subtilis FWC1, B. amyloliquefaciens NAAS1 및 Pichia farinosa NAAS2의 산업적 생산을 위한 배양 조건 vol.39, pp.3, 2014, https://doi.org/10.22424/jdsb.2021.39.3.87