DOI QR코드

DOI QR Code

Sonochemical Grafting of Poly(vinyl alcohol) onto Multiwall Carbon Nanotubes in Water

초음파를 이용한 PVA에 의한 다중벽 탄소나노튜브의 수상 그래프팅

  • Kim, Yeongseon (Department of Chemistry & Chemical Engineering, Inha University) ;
  • Baeck, Sung Hyeon (Department of Chemistry & Chemical Engineering, Inha University) ;
  • Shim, Sang Eun (Department of Chemistry & Chemical Engineering, Inha University)
  • 김영선 (인하대학교 화학.화학공학 융합대학원) ;
  • 백성현 (인하대학교 화학.화학공학 융합대학원) ;
  • 심상은 (인하대학교 화학.화학공학 융합대학원)
  • Received : 2014.01.08
  • Accepted : 2014.01.30
  • Published : 2014.05.25

Abstract

Multiwall carbon nanotubes (MWCNTs) were modified with a water soluble polymer, poly(vinyl alcohol), PVA, using a simple ultrasonic wave in water. Under the irradiation of ultrasound, PVA chains were severed as macroradicals and instantly grafted onto the surface of MWCNTs due to the radical scavenging effect of MWCNTs. To control the grafting PVA onto MWCNTs, the ultrasonication power and irradiation time were changed from 300 to 500 W and from 10 to 50 min, respectively. The grafted PVA onto MWCNTs was confirmed by FTIR, TGA, SEM, and TEM. Dispersion stability of the modified MWCNTs was monitored by Turbiscan. The amount of grafted PVA on MWCNTs increased with the increase in the sonication power and irradiation time. The grafted PVA on MWCNTs induced the improved dispersion stability of the modified MWCNTs in water. These findings exhibit that ultrasound can be readily used for the grafting polymer chains on MWCNTs.

초음파를 이용한 수중 반응을 통하여 친수성 고분자인 poly(vinyl alcohol) (PVA)를 다중벽 탄소나노튜브 표면에 개질하였다. 초음파 인가 시 PVA는 라디칼을 지닌 상태로 절단되며 탄소나노튜브는 일반적으로 라디칼 스캐빈저 역할을 하므로 생성된 PVA 라디칼과 반응하여 PVA 사슬이 탄소나노튜브 표면에 그래프트 된다. PVA의 그래프트 반응을 조절하기 위하여 초음파 인가 조건을 300과 500 W로 선택하였으며, 인가 시간은 최대 50분으로 하였다. 탄소나노튜브 표면에 그래프트된 PVA는 FTIR, TGA, SEM, 및 TEM을 통하여 분석하였다. 또한 PVA로 개질된 탄소나노튜브의 분산안정성을 분석하였다. 그래프트된 PVA의 양은 초음파의 인가 출력과 인가 시간에 비례하여 증가하였으며, PVA로 개질된 탄소나노튜브는 물 속에서 매우 안정적인 분산성을 보였다. 이는 복잡한 화학반응 과정없이 초음파를 이용하면 탄소나노튜브를 고분자로 간단히 개질할 수 있음을 보여준다.

Keywords

References

  1. P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, Phys. Rev. Lett., 87, 215502-1 (2001). https://doi.org/10.1103/PhysRevLett.87.215502
  2. J. Robertson, Mater. Today, 7, 46 (2004). https://doi.org/10.1016/S1369-7021(04)00448-1
  3. L. Guadagno, L. Vertuccio, A. Sorrentino, M. Ramimondo, C. Naddeo, V. Vittoria, G. Iannuzzo, E. Calvi, and S. Russo, Carbon, 47, 2419 (2009). https://doi.org/10.1016/j.carbon.2009.04.035
  4. E. T. Thostenson, Z. Ren, and T. W. Chou, Compos. Sci. Technol., 61, 1899 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
  5. O. Breuer and U. Sundararaj, Polym. Compos., 25, 630 (2004). https://doi.org/10.1002/pc.20058
  6. J. Choi, E. J. Park, D. W. Park, and S. E. Shim, Synthetic Met., 160, 2664 (2010). https://doi.org/10.1016/j.synthmet.2010.10.022
  7. W. A. Deheer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995). https://doi.org/10.1126/science.270.5239.1179
  8. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci., 35, 357 (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003
  9. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun'ko, Carbon, 44, 1624 (2006). https://doi.org/10.1016/j.carbon.2006.02.038
  10. J. H. Sung, H. S. Kim, H. J. Jin, H. J. Choi, and I. Chin, Macromolecules, 37, 9899 (2004). https://doi.org/10.1021/ma048355g
  11. Q. Chen, L. Dai, M. Gao, S. Huang, and A. Mau, J. Phys. Chem. B, 105, 618 (2001). https://doi.org/10.1021/jp003385g
  12. C. Park, Z. Oundaies, K. A. Watson, R. E. Crooks, J. Smith, Jr., S. E. Lowther, J. W. Connell, E. J. Siochi, J. S. Harrison, and T. L. S. Clair, Chem. Phys. Lett., 364, 202 (2002).
  13. G. Schmid and O. Rommel, Z. Phys. Chem. A, 185, 97 (1939).
  14. T. J. Mason and J. P. Lorimer, Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry, Wiley, New York, USA, 1988.
  15. T. J. Mason, Advances in Sonochemistry, JAI Press, London, UK, 1990.
  16. G. J. Price, Sonochemistry and Sonoluminescences, Kluwer Academic Publishers, Boston, USA, 1999.
  17. T. J. Mason, Sonochemistry, Oxford University Press, New York, USA, 1999.
  18. G. J. Price and P. F. Smith, Polym. Inter., 24, 159 (1991). https://doi.org/10.1002/pi.4990240306
  19. A. Gronroos, P. Pirkonen, J. Heikkinen, J. Ihalainen, H. Mursunen, and H. Sekki, Ultrason. Sonochem., 8, 259 (2001). https://doi.org/10.1016/S1350-4177(01)00086-4
  20. A. V. Mohod and P. R. Gogate, Ultrason. Sonochem., 18, 727 (2011). https://doi.org/10.1016/j.ultsonch.2010.11.002
  21. P. A. R. Glynn and B. M. E. van der Hoff, J. Macromol. Sci. Chem., 7, 1695 (1973). https://doi.org/10.1080/00222337308066385
  22. A. Martinez and A. Galano, J. Phys. Chem., 114, 8184 (2010).
  23. I. Fenoglio, M. Tomatis, D. Lison, J. Muller, A. Fonseca, J. B. Nagy, and B. Fubini, Free Radical Bio. Med., 40, 1227 (2006). https://doi.org/10.1016/j.freeradbiomed.2005.11.010
  24. P. Snabre and P. Mills, Colloid Surf. A, 152, 79 (1999). https://doi.org/10.1016/S0927-7757(98)00619-0
  25. H. Freundlich, J. Phys. Chem., 41, 1151 (1937). https://doi.org/10.1021/j150387a001
  26. A. Weissler, J. Appl. Phys., 21, 171 (1950). https://doi.org/10.1063/1.1699618
  27. M. A. K. Mostafa, J. Polym. Sci., 33, 311 (1958). https://doi.org/10.1002/pol.1958.1203312630
  28. M. A. K. Mostafa, J. Polym. Sci., 28, 519 (1958). https://doi.org/10.1002/pol.1958.1202811804
  29. R. M. Lago, Y. K. Chen, M. L. H. Green, P. J. F. Harris, and S. C. Tsang, Carbon, 34, 699 (1996). https://doi.org/10.1016/0008-6223(96)00037-1
  30. E. Titus, N. Ali, G. Cabral, and M. J. Jackson, J. Mater. Eng. Perform., 15, 182 (2006). https://doi.org/10.1361/105994906X95841
  31. J. Zhang, J. Phys. Chem. B, 107, 3712 (2003). https://doi.org/10.1021/jp027500u
  32. S. Banerjee, T. Hemraj-Benny, and S. S. Wong, Adv. Mater., 1, 17 (2005).

Cited by

  1. Conveying Advanced Li-ion Battery Materials into Practice The Impact of Electrode Slurry Preparation Skills vol.6, pp.21, 2016, https://doi.org/10.1002/aenm.201600655