DOI QR코드

DOI QR Code

An Isometric Shape Interpolation Method on Mesh Models

메쉬 모델에 대한 아이소메트릭 형상 보간 방법

  • Baek, Seung-Yeob (Institute of Advanced Machinery and Design, Seoul National University) ;
  • Lee, Kunwoo (School of Mechanical and Aerospace Engineering, Seoul National University)
  • 백승엽 (서울대학교 정밀기계설계공동연구소) ;
  • 이건우 (서울대학교 기계항공공학부)
  • Received : 2014.02.25
  • Accepted : 2014.04.10
  • Published : 2014.06.01

Abstract

Computing the natural-looking interpolation of different shapes is a fundamental problem of computer graphics. It is proved by some researchers that such an interpolation can be achieved by pursuing the isometry. In this paper, a novel coordinate system that is invariant under isometries is defined. The coordinate system can easily be converted from the global vertex coordinates. Furthermore, the global coordinates can be efficiently recovered from the new coordinates by simply solving two sparse least-squares problems. Since the proposed coordinate system is invariant under isometries, then transformations such as global rigid trans-formations, articulated posture deformations, or any other isometric deformations, do not change the coordinate values. Therefore, shape interpolation can be done in this framework without being affected by the distortions caused by the isometry.

Keywords

References

  1. Hsiao, S.-W. and Liu, M.C., 2002, A Morphing Method for Shape Generation and Image Prediction in Product Design, Design Studies, 23(6), pp.533-556. https://doi.org/10.1016/S0142-694X(01)00028-X
  2. Sofla, A.Y.N., Meguid, S.A., Tan, K.T. and Yeo, W.K., 2010, Shape Morphing of Aircraft Wing: Status and Challenges, Materials & Design, 31(3), pp.1284-1292. https://doi.org/10.1016/j.matdes.2009.09.011
  3. Blanz, B. and Vetter, T., 1999, A Morphable Model for the Synthesis of 3d Faces, Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99), Los Angeles, CA, USA, pp.187-194.
  4. Allen, B., Curless, B. and Popovic, Z., 2003, The Space of of Human Body Shapes: Reconstruction and Parameterization from Range Scans, ACM Transactions on Graphics, 22(3), pp.587-594. https://doi.org/10.1145/882262.882311
  5. Baek, S.-Y. and Lee, K., 2012, Parametric Human Body Shape Modeling Framework for Human-centered Product Design, Computer-Aided Design, 44(1), pp.56-67. https://doi.org/10.1016/j.cad.2010.12.006
  6. Praun, E., Sweldens, W. and Schroder, P., 2001, Consistent Mesh Parameterizations, Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '01), Los Angeles, CA, USA, pp.179-184.
  7. Yu, J.-B. and Chuang, J.-H., 2003, Consistent Mesh Parameterizations and Its Application in Mesh Morphing, Proceedings of Computer Graphics Workshop, Hualien, Taiwan.
  8. Kraevoy, V. and Sheffer, A., 2004, Cross-parameterization and Compatible Remeshing of 3D Models, ACM Transactions on Graphics, 23(3), pp.861-869. https://doi.org/10.1145/1015706.1015811
  9. Yeh, I.C., Lin, C.H., Sorkine, O. and Lee, T.Y., 2011, Template-based 3d Model Fitting Using Dual-domain Relaxation, IEEE Transactions on Visualization and Computer Graphics, 17(8), pp.1178-1190. https://doi.org/10.1109/TVCG.2010.124
  10. Sheffer, A., Praun, E. and Rose, K., 2006, Mesh parameterization Methods and Their Applications, Foundations and Trends$^{(R)}$ in Computer Graphics and Vision, 2(2), pp.105-171. https://doi.org/10.1561/0600000011
  11. Park, S.I. and Hodgins, J.K., 2006, Capturing and Animating Skin Deformation in Human Motion, ACM Transactions on Graphics, 25(3), pp.881-889. https://doi.org/10.1145/1141911.1141970
  12. James, D.L. and Twigg, C.D., 2005, Skinning Mesh Animations, ACM Transactions on Graphics, 24(3), pp.399-407. https://doi.org/10.1145/1073204.1073206
  13. Jacobson, A. and Sorkine, O., 2011, Stretchable and Twistable Bones for Skeletal Shape Deformation, ACM Transactions on Graphics, 30(6), Article No. 165.
  14. Kilian, M., Mitra, N.J. and Pottmann, H., 2007, Geometric Modeling in Shape Space, ACM Transactions on Graphics, 26(3), Article No. 64.
  15. Alexa, M., Cohen-Or, D. and Levin, D., 2000, As-rigid-as-possible Shape Interpolation, Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '00), New Orleans, LA, USA, pp.157-164.
  16. Sorkine, O. and Alexa, M., 2007, As-rigid-aspossible Surface Modeling, Proceedings of the Fifth Eurographics Symposium on Geometry (SGP '07), Barcelona, Spain, pp.109-116.
  17. Xu, D., Zhang, H., Wang, Q. and Bao, H., 2006, Poisson Shape Interpolation, Graphical Models, pp.268-281.
  18. Baxter, W., Barla, P. and Anjyo, K., 2008, Rigid Shape Interpolation Using Normal Equations, Proceedings of the 6th International Symposium on Non-photorealistic Animation and Rendering, Annecy, France, pp.59-64.
  19. Alexa, M., 2003, Differential Coordinates for Local Mesh Morphing and Deformation, The Visual Computer, 19(2-3), pp.105-114.
  20. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rossl, C. and Seidel, H.P., 2004, Differential Coordinates for Interactive Mesh Editing, Proceedings of International Conference on Shape Modeling and Applications 2004 (SMI 2004), Genova, Italy, pp.181-190.
  21. Lipman, Y., Sorkine, O., Levin, D. and Cohen- Or, D., 2005, Linear Rotation-invariant Coordinates for Meshes, Proceedings of the 32nd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '05), Los Angeles, CA, USA, pp.479-487.
  22. Sheffer, A. and Kraevoy, V., 2004, Pyramid Coordinates for Morphing and Deformation, Proceedings of 2nd International Symposium on 3D Data Processing, Visualization and Transmission 2004 (3DPVT 2004), Thessaloniki, Greece, pp.68-75.
  23. Terzopoulos, D., Platt, J., Barr, A. and Fleischer, K., 1987, Elastically Deformable Models, Proceedings of the 14th Annual Conference on Computer graphics and Interactive Techniques (SIGGRAPH '87), Anaheim, CA, USA, pp.205-214.
  24. Igarashi, T., Moscovich, T. and Hughes, J.F., 2005, As-rigid-as-possible Shape Interpolation, Proceedings of the 32nd International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '05), Los Angeles, CA, USA, pp.1134-1141.
  25. Park, F.C. and Ravani, B., 1997, Smooth Invariant Interpolation of Rotations, ACM Transactions on Graphics, 16(3), pp.277-295. https://doi.org/10.1145/256157.256160