References
- ACI committee 211 (2008), Guide for selecting proportions for High-Strength concrete using Portland cement and other cementitious materials, ACI 211. 4R-08, December.
- Adhikary, B.B. and Mutsuyoshi, H. (2006), "Prediction of shear strength of steel fiber RC beams using neural networks", Constr. Build. Mate., 20 (9), 801-811. https://doi.org/10.1016/j.conbuildmat.2005.01.047
- Bai, J., Sabir, B.B., Wild, S. and Kinuthia, J.M. (2000), "Strength development in concrete incorporating PFA and metakaolin", Magazine of Concrete Research, 52 (3), 153-162. https://doi.org/10.1680/macr.2000.52.3.153
- Bilim, C., Cengiz, D., Atis, H.T. and Karahan, O. (2009), " Predicting the Compressive strength of ground granulated blast furnace slag concrete using artificial neural network", Adv. Eng. Softw., 40, 334-340. https://doi.org/10.1016/j.advengsoft.2008.05.005
- Curciol, F. and Deangelis, B.A. (1998), "Dilatant behavior of superplasticized cement pastes containing metakaolin", Cement Concrete Res., 28 (5), 629-634. https://doi.org/10.1016/S0008-8846(98)00046-5
- Demir, F. (2008), "Prediction of elastic modulus of normal and high strength concrete by artificial neural networks", Constr. Build. Mater, 22 (7), 1428-1435. https://doi.org/10.1016/j.conbuildmat.2007.04.004
- Eldin, N.N. and Senouci, A.B. (1994), "Measurement and prediction of the strength of rubberized concrete", J. Cement Concrete Compos., 16, 287-298. https://doi.org/10.1016/0958-9465(94)90041-8
- Hanbay, D., Turkoglu, I. and Demir, Y. (2008), "An expert system based on wavelet decomposition and neural network for modeling chua's circuit", Exp. Syst. Appl., 34 (4), 2278-2283. https://doi.org/10.1016/j.eswa.2007.03.002
- Hanbay. D., Turkoglu, I. and Demir, Y. (2008), "Prediction of wastewater treatment plant performance based on wavelet packet decomposition and neural networks", Exp. Syst Appl., 34 (2), 1038-1043. https://doi.org/10.1016/j.eswa.2006.10.030
- Haykin, S. (1994), Neural Networks, A Comprehensive Foundation, College Publishing Comp. Inc., 1994.
- Hola, J. and Schabowicz, K. (2004), "New technique of nondestructive assessment of concrete strength using artificial intelligence", J. NDT E Int.
- Kewalramani, A.M. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Auto Constr., 15 (15), 374-379. https://doi.org/10.1016/j.autcon.2005.07.003
- Lai, S. and Serra, M. (1997), "Concrete strength prediction by means of neural network", J. Construct. Build. Mater., 11(2), 93-98. https://doi.org/10.1016/S0950-0618(97)00007-X
- Langley, W.S., Carette, G.G. and Malhotra, V.M. (1989), "Structural concrete incorporating high volumes of ASTM class F fly ash", ACI Mater. J., 86, 507- 514.
- Lynsdale, C.J. and Khan M.I. (2000), "Chloride and oxygen permeability of concrete incorporating fly ash and silica fume in ternary systems", in V.M. Malhotra (Ed.), Proceedings of the 5th CANMET/ACI International Conference on Durability of Concrete, Barcelona, Spain, 2, 739-753, SP-192.
- Malhotra V.M. (2006), "Reducing CO2 emissions", Concr. Int., 28 (9), 42-45.
- Malhotra, V.M. (1990), "Durability of concrete incorporating high-volume of low-calcium (ASTM class F) flyash", Cement Concrete Compos., 12 (4), 271-277. https://doi.org/10.1016/0958-9465(90)90006-J
- Mansour, M.Y., Dicleli, M., Lee. J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural network", Eng. Struct., 26 (6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011
- Mehta, P.K. (2002), "Greening of the concrete industry for sustainable development", Concr. Int., 24 (7), 22-28.
- Mehta, P.K. and Monteiro, J.P.M. (2006), Concrete: Microstructure, Properties and Materials, McGraw- Hill, 3rd ed, New York.
- Menendez, G., Bonavetti, V. and Irassar, E.F. (2003), "Strength development of ternary blended cement with limestone filler and blast-furnace slag", Cem. Concr. Compos., 25 (1), 61-67. https://doi.org/10.1016/S0958-9465(01)00056-7
- Meyer, C. (2009), "The greening of the concrete industry", Cement Concrete Composites, 31 (8), 601-605. https://doi.org/10.1016/j.cemconcomp.2008.12.010
- Mindess, S., Young, J. and Darwin, D. (2003), Concrete, Prentice- Hall, 2nd ed, Upper Saddle River.
- Khan, M.I. (2011), "Predicting properties of High Performance Concrete containing composite cementitious materials using Artificial Neural networks", Automat. Constr., 22, 516-524.
- Nirma Farzadnia (2011), "Incorporation of mineral admixtures in sustainable high performance concrete", Int. J. Sustainable Construct. Eng. Tech., 2(1).
- Noorzaei, J., Hakim, S.J.S., Jaafar, M.S. and Thanoon, W.A.M. (2007), "Development of artificial neural networks for predicting concrete compressive strength", Int. J. Eng. Tech., 4, 141-153.
- Oluokun, F.A. (1994), ACI Mater. J., 91, 362.
- Parande, A.K. (2013), "Role of ingredients for high strength and high performance concrete - A review", Adv. Concrete Construct., 1(2), 151-162. https://doi.org/10.12989/acc.2013.01.2.151
- Popovics, S. (1990), ACI Mater. J., 87, 517.
- Rafiq, M.Y., Bugmann, G. and Easter brook, D.J. (2001), "Neural network design for engineering Applications", Comput. Struct., 79 (17), 1541-1552. https://doi.org/10.1016/S0045-7949(01)00039-6
- Ramezanianpour, A.A. and Bahrami Jovein, H. (2011), "Influence of metakaolin as supplementary cementing material on strength and durability of concretes", Construct. Build. Mater., 30, 470-479.
- Saridemir, M., Topcu, I.B., Ozcan, F. and Severcan, M.H. (2009), "Prediction of long term effects of GGBFS on compressive strength of concrete by artificial neural networks and fuzzy logic", Construct. Build. Mater., 23, 1279-1286. https://doi.org/10.1016/j.conbuildmat.2008.07.021
- Song, H.W. and Saraswathy, V. (2006), "Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag - an overview", J Hazard Mater, 138 (2), 226-233. https://doi.org/10.1016/j.jhazmat.2006.07.022
- Sun, W., Zhang, Y.S., Liu, S. and Zhang, Y. (2004), "The influence of mineral admixtures on resistance to corrosion of steel bars in green High-performance concrete", Cement Concrete Res., 34, 1781-1785. https://doi.org/10.1016/j.cemconres.2004.01.008
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", J. Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
Cited by
- Bond strength prediction of steel bars in low strength concrete by using ANN vol.22, pp.2, 2018, https://doi.org/10.12989/cac.2018.22.2.249
- Artificial Neural Network to Predict the Compressive Strength of Semilightweight Concrete Containing Ultrafine GGBS vol.48, pp.2, 2019, https://doi.org/10.1520/jte20180597
- Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites vol.28, pp.1, 2014, https://doi.org/10.12989/cac.2021.28.1.055
- Model-Based Methods to Produce Greener Metakaolin Composite Concrete vol.11, pp.22, 2014, https://doi.org/10.3390/app112210704