참고문헌
- ATC - 40 (1996), Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, California.
- CEN (2003), "European standard EN1993-1-1: Eurocode 3: Design of steel structures. Part 1-1: General rules and rules for buildings", Comite European de Normalisation, Brussels.
- CEN (2004), "European standard EN 1993-1-8: Eurocode 3: Design of steel structures. Part 1-8: Design of joints", Comite European de Normalisation, Brussels.
- CEN (2005), "European standard EN1994-1-1: Eurocode 4: Design of composite steel and concrete structures. Part 1-1: General rules and rules for buildings", Comite European de Normalisation, Brussels.
- CEN (2003), "European standard EN1998-1-1: Eurocode 8: Design of structures for earthquake resistance. Part 1-1: General rules, seismic actions and rules for buildings", Comite European de Normalisation, Brussels.
- Christopoulos, C., Filiatrault, A., Folz, B. and Uang, C.M (2002), "Post-Tensioned Energy Dissipating Connections for Moment-Resisting Steel Frames", ASCE J. Struct. Eng., 128(9), 1111-1120. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1111)
- Dargush, G. and Soong, T. (1995), "Behavior of metallic plate dampers in seismic passive energy dissipation systems", Earthq. Spec., 11(4), 545-568. https://doi.org/10.1193/1.1585827
- Dimakogianni, D., Dougka, G. and Vayas, I. (2012), "Innovative seismic-resistant steel frames (FUSEIS 1-2) experimental analysis", Steel Construct. Des. Res., 5(4), 212-221. https://doi.org/10.1002/stco.201210026
- FEMA - 356 (2000), Prestandard and Commentary for the seismic rehabilitation of Buildings, Washington.
- FEMA - P695 (2009), Quantification of building seismic performance factors, Washington.
- Herning, G., Garlock, M. and Vanmarcke, E. (2009), "Evaluation of design procedure for steel selfcentering moment frames", Proceedings of Steel Structures in Seismic Areas (STESSA), Philadelphia PA, U.S.A., August.
- Karydakis, P.H. (2011), "Innovative systems for stiffness and energy dissipation, INSTED", Ph.D. Dissertation, National Technical University of Athens, Athens.
- Nakashima, M. (1995), "Strain-hardening behavior of shear panels made of low-yield steel. i:test.", J. Struct. Eng., 121(12), 1742-1749. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1742)
- Nakashima, M., Akazawa, T. and Tsuji, B. (1995), "Strain-hardening behavior of shear panels made of lowyield steel.ii:model", J. Struct. Eng., 121(12), 1750-1757. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1750)
- Maheri, M. R. and Akbari, R. (2002), "Seismic behaviour factor, R, for steel X-braced and knee-braced RC buildings", Eng. Struct., 25(12), 1505-1513.
- Plumier, A., Doneux, C., Castiglioni, C., Brescianini, J., Crespi, A., Dell'Anna, S., Lazzarotto, L., Calado, L., Ferreira, J., Feligioni, S., Bursi, O., Ferrario, F., Sommavilla, M., Vayas, I., Thanopoulos, P. and Demarco, T. (2004), Two IN Novations for Earthquake Resistant Design - The INERD Project, Final Report, Research Programme of the Research Fund for Coal and Steel.
- SAP (2000), Csi Computers and Structures Inc., www.csiberkeley.com
- Sabelli, R., Mahin, S. and Chang, C. (2003), "Seismic demands on steel braced buildings with bucklingrestrained braces", Eng. Struct., 25(5), 665-666.
- Saeki, E., Iwamatu, K. and Wada, A. (1996),"Analytical study by finite element method and comparison with experiment results concerning buckling-restrained unbonded braces", J. Struct. Construct. Eng., Architectural Institute of Japan, 484, 111- 120.
- Tena-Colunga, A. (1997), "Mathematica modeling of the ADAS energy dissipation device", Eng. Struct., 19(10), 811-820. https://doi.org/10.1016/S0141-0296(97)00165-X
- Tsai, K.C., Chen, H.W. and Hong, C. and Su, Y. (1993), "Design of steel triangular plate energy absorbers for seismic-resistant construction", Earthq. Spec., 9(3), 505-528. https://doi.org/10.1193/1.1585727
- Vayas, I., Karydakis, P.H., Dimakogianni, D., Dougka, G., Castiglioni, C.A. and Kanyilmaz, A. (2012), "Dissipative devices for seismic resistant steel frames - The FUSEIS project, design guide", Research Programme of the Research Fund for Coal and Steel.
- Vayas, I., Karydakis, P.H., Dimakogianni, D., Dougka, G., Castiglioni, C.A. and Kanyilmaz, A. (2013), "Dissipative devices for seismic-resistant steel frames (fuseis)", Research Fund for Coal and Steel, European Commission, EU 25901 EN, 2013.
- Vayas, I. and Thanopoulos, P. (2005), "Innovative dissipative (INERD) pin connections for seismic resistant braced frames", Int. J. Steel Struct., 5(5), 453-464.
- Vayas, I. and Thanopoulos, P. (2006), Dissipative (INERD) "Verbindungenfur stahltragwerke in erdbebengebieten", Stahlbau, 75(12), 993-1003. https://doi.org/10.1002/stab.200610108
- Vayas, I., Thanopoulos, P. and Castiglioni C. (2007), "Stabilitatsverhalten von Stahlgeschossbautenmitdissipativen INERD unter Erdbebenbeanspruchung", Bauingenieur, 82(3), 125-133.
피인용 문헌
- Seismic behavior of frames with innovative energy dissipation systems (FUSEIS1-2) vol.90, 2015, https://doi.org/10.1016/j.engstruct.2015.01.054
- I.11.00: Innovative systems for seismic resistance: The INNOSEIS Project vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.392
- Energy-factor-based damage-control evaluation of steel MRF systems with fuses vol.22, pp.3, 2016, https://doi.org/10.12989/scs.2016.22.3.589
- Mitigating seismic response of RC moment resisting frames using steel energy-dissipative columns vol.174, pp.None, 2014, https://doi.org/10.1016/j.engstruct.2018.07.097
- Seismic Performances of Conventional and LRB-Isolated Buildings Comparing to Seesaw Buildings vol.10, pp.1, 2014, https://doi.org/10.2478/jaes-2020-0008
- Performance of innovative composite buckling-restrained fuse for concentrically braced frames under cyclic loading vol.36, pp.2, 2014, https://doi.org/10.12989/scs.2020.36.2.163