DOI QR코드

DOI QR Code

접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구

Properties of High Power Flip Chip LED Package with Bonding Materials

  • 이태영 (한국생산기술연구원 용접접합기술센터) ;
  • 김미송 (한국생산기술연구원 용접접합기술센터) ;
  • 고은수 (이아이라이팅) ;
  • 최종현 (이아이라이팅) ;
  • 장명기 (이아이라이팅) ;
  • 김목순 (인하대학교 금속공학과) ;
  • 유세훈 (한국생산기술연구원 용접접합기술센터)
  • 투고 : 2013.12.17
  • 심사 : 2014.03.17
  • 발행 : 2014.03.30

초록

고출력 LED 패키지의 열적 경로(thermal path)를 줄이기 위해 플립칩 본딩법에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 Au-Sn 열압착 본딩 및 Sn-Ag-Cu(SAC) 리플로우 본딩을 이용하여 본딩 특성 및 열적특성을 비교 평가 하였다. Au-Sn 열압착 본딩은 50 N에서 $300^{\circ}C$의 접합온도로 본딩하였고, SAC 솔더는 솔더페이스트를 인쇄한 후 리플로우법으로 피크온도 $255^{\circ}C$에서 30 sec에서 본딩하였다. SAC 솔더를 사용한 LED 패키지의 전단강도는 $5798.5gf/mm^2$로 Au-Sn 열압착 본딩의 $3508.5gf/mm^2$에 비해 1.6배 높았다. 파단면과 단면분석 결과 Au-Sn, SAC 솔더 모두 LED 칩 내부에서 파단이 일어나는 것을 관찰하였다. 반면 Au-Sn 열압착 본딩 샘플의 열저항은 SAC솔더 접합 샘플에 비해 낮았으며, SAC 솔더 접합부 내부의 기공에 의해 열저항이 커짐을 알 수 있었다.

Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

키워드

참고문헌

  1. N. Narendran, Y. Gu, J. P. Freyssinier, H. Yu and L. Deng, "Solid-state lighting: Failure analysis of white LEDs", J. Cryst. Growth, 268(3-4), 449 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.071
  2. S. Ishizaki, H. Kimura and M. Sugimoto, "Lifetime estimation of high power white LEDs", J. Light & Vis. Env., 31(1), 11 (2007). https://doi.org/10.2150/jlve.31.11
  3. M. Meneghini, S. Podda, A. Morelli, R. Pintus, L. Trevisanello, G. Meneghesso, M. Vanzi and E. Zanoni, "High brightness GaN LEDs degradation during dc and pulsed stress", Microelectron. Reliab., 46(9-11), 1720 (2006). https://doi.org/10.1016/j.microrel.2006.07.050
  4. G. Meneghesso, S. Levada, R. Pierobon, F. Rampazzo, E. Zanoni, A. Cavallini, A. Castaldini, G. Scamarcio, S. Du and I. Eliashevich, "Degradation mechanisms of GaN-based LEDs after accelerated DC current aging", Proc. 2002 International Electron Devices Meeting(IEDM), San Francisco, 103, IEEE Components, (2005).
  5. J. H. Lau, Low Cost Flip chip Technologies, pp.1-17, McGraw-Hill, New York (2000).
  6. R. R. Tummala, "SOP: What is it and why? A new microsystem-integration technology paradigm-Moore's law for system integration of miniaturized convergent systems of the next decade", IEEE Trans. Adv. Packag., 27(2), 241 (2004). https://doi.org/10.1109/TADVP.2004.830354
  7. R. R. Tummala, and M. Swaminathan, Introduction to Systemon-Package(SOP), pp.7-8, Mcgraw-Hill, New York (2008).
  8. H. Ye, C. basaran and D. C. Hopkins, "Damage mechanics of microelectronics solder joints under high current densities", Int. J. Solids Struct., 40, 4021 (2003). https://doi.org/10.1016/S0020-7683(03)00175-6
  9. J. W. Uoon, W. C. Moon and S. B. Jung, "Core technology of electronic packaging", J. Kor. Weld. Soc., 23(2), 10 (2005).
  10. B. Djurfors and D. G. Ivey, "Microstructural characterization of pulsed electrodeposited Au/Sn alloy thin films", Mater. Sci. Eng. B(90), 309 (2002). https://doi.org/10.1016/S0921-5107(02)00060-0
  11. Z. Ma, X. Zheng, W. Liu, X. Lin and X. lin, "Fast thermal resistance measurement of high brightness LED", Proc. 6th International Conference on Electronic Packaging Technology(ICEPT), Shenzhen, 1, IEEE Components, (2005).
  12. T. Ayodha, H. S. Han, S. Y. Kim and S. W. Karng, "Thermal resistance measurement of high Power LEDs". Trans. Kor. Soc. Mech. Eng., 158 (2012).
  13. M. W. Shin and J. P. Kim, Introduction to LED Packaging Technology, pp.192-195, Bookshill, Seoul (2009).
  14. H. H. Kim, S. H. Choi, S. H. Shin, Y. G. Lee, S. M. Choi and Y. S. Oh, "Thermal Transient Characteristics of Die Attach in High Power LED Package", J. Microelectron. Packag. Soc., 12(4), 331 (2005).
  15. "A Study on the Thermal Behaviour of Via Design in the Ceramic Package", J. Microelectron. Packag. Soc., 10(1), 39 (2003).
  16. H. G. Song, J. P. Ahn and J. W. Morris, "The Microstructure of Eutectic Au-Sn Solder Bumps on Cu/Electroless Ni/Au", J. Electron. Mater., 30(9), 1083 (2001). https://doi.org/10.1007/s11664-001-0133-9
  17. T. Laurila, V. Vuorinen and J. K. Kivilahti, "Interfacial reactions between lead-free solders and commonbase materials", Mater. Sci. Eng. R, 49(1-2), 1 (2005). https://doi.org/10.1016/j.mser.2005.03.001
  18. P. G. Kim and K. N. Tu, "Fast dissolution and soldering reactions on Au foils", Mater. Chem. Phys., 53, 165 (1998). https://doi.org/10.1016/S0254-0584(97)02076-2
  19. J. A. King, "Material Handbook for Hybrid Microelectronics", Artec House, Norwood, MA (1988).
  20. J. Bilek, J. K. Atkinson and W. A. Wakeham, "Thermal Conductivity of Molten Lead-Free Solders", Inter. J. Thermophys., 27, (2006).
  21. IPC-A-610D, "Acceptability of Electronic Assemblies", IPC, Bannockburn (2000).

피인용 문헌

  1. 전기화학적 정전위 활성화를 사용한 수소 제거에 의한 AlGaN기반의 UV-C 발광 다이오드의 p-형 활성화 vol.28, pp.4, 2014, https://doi.org/10.6117/kmeps.2021.28.4.085