DOI QR코드

DOI QR Code

Consequence Analysis for Fire and Explosion Accidents in Propylene Recovery Process

프로필렌 회수공정에서 화재 및 폭발 사고의 피해영향 해석

  • Received : 2014.01.19
  • Accepted : 2014.02.24
  • Published : 2014.02.28

Abstract

This study aims to suggest risk management plan including safety measures through hazard identification followed by consequence analysis in petrochemical plants. Consequence analysis was performed through practical release scenario by using PHAST RISK(ver. 6.7) software in the propylene recovery process(PRP). As results, consequences by fire or explosion accidents in the depropanizer zone, deethanizer zone and heat pump zone were relatively larger than other else zones among six process zones in the PRP. In the case of jet fire, it is recommendable not to install residence building within 200 m of the process zone. Additionally, process zones having large inventory or high pressure must be prevented from accidents and required to establish quick response against accidents.

본 연구에서는 석유화학공정에서 잠재위험요소를 확인하고, 사고 결과분석을 통해 안전대책 수립 등의 위험관리 방안을 제시하고자 하였다. 이를 위해 프로필렌 회수공정(PRP)에서 현실적인 상황을 고려한 누출 시나리오를 선정하고, PHAST RISK(ver. 6.7) 프로그램을 사용하여 화재 및 폭발 사고의 피해범위를 산출하고, 피해영향을 해석하였다. 그 결과, 6개의 PRP 공정지역 중에서 디프로파나이저 지역, 디에타나이저 지역 및 히트펌프 지역에서는 화재 및 폭발 사고의 피해범위가 매우 크게 나타났다. 따라서 제트화재가 발생하는 공정지역에서는 200 m의 반경 내에서 사람이 상주할 수 있는 건물을 설치하지 않는 것이 바람직하고, 재고량과 압력이 큰 공정지역에서는 사고위험을 사전에 예방해야 하고, 사고 발생 시에는 신속한 대처방안 수립이 요구되었다.

Keywords

References

  1. Korea Occupational Safety and Health Agency (KOSHA), Consequence Analysis (CA), Industrial Safety Training Institute of KOSHA, ISTI-2001-29-86, (2001)
  2. Center for Chemical Process Safety(CCPS), Guidelines for Consequence Analysis of Chemical Releases, American Institute of Chemical Engineers (AIChE), (1999).
  3. Center for Chemical Process Safety(CCPS), Guidelines for Chemical Process Quantitative Risk Analysis, American Institute of Chemical Engineers (AIChE), (2000)
  4. API, Risk Based Inspection Base Resource Document : API-581, American Petroleum Institute, 1st ed., (2000)
  5. DNV, Quantitative Risk Assessment(QRA) Principles, Det Norske Veritas, (2010)
  6. Roy, P. K., Bhatt, A., and Rajagopal, C., "Quantitative risk assessment for accidental release of titanium tetrachloride in a titanium sponge production plant", J. of Hazardous Materials, 102(2-3), 167-186, (2003) https://doi.org/10.1016/S0304-3894(03)00220-6
  7. Si, H., Ji, H., and Zeng, X., "Quantitative risk assessment model of hazardous chemicals leakage and application", Safety Science, 50(7), 1452-1461, (2012) https://doi.org/10.1016/j.ssci.2012.01.011
  8. Fabbrocino, G., Iervolino, I., Orlando, F., and Salzano, E., "Quantitative risk analysis of oil storage facilities in seismic areas", J. of Hazardous Materials, 123(1-3), 61-69, (2005) https://doi.org/10.1016/j.jhazmat.2005.04.015
  9. Korea Occupational Safety and Health Agency( KOSAH), Safety Planning in Chemical Industry, KOSHA, Korea, 8-28, (1993)
  10. Korea Occupational Safety and Health Agency (KOSHA), http://www.kosha.or.kr/msds/msdsMain.do?menuId=69, (2012).

Cited by

  1. Case Study: Safety Assessment of Plant Layout between Ethylene Storage Tanks and Process Equipment According to Capacity and Weather Conditions vol.17, pp.8, 2014, https://doi.org/10.3390/ijerph17082849